
Foundations and Trends® in Databases

Differential Privacy for Databases

Suggested Citation: Joseph P. Near and Xi He (2021), “Differential Privacy for
Databases”, Foundations and Trends® in Databases: Vol. 11, No. 2, pp 109–225. DOI:
10.1561/1900000066.

Joseph P. Near
University of Vermont

jnear@uvm.edu

Xi He
University of Waterloo

xi.he@uwaterloo.ca

This article may be used only for the purpose of research, teaching,
and/or private study. Commercial use or systematic downloading (by
robots or other automatic processes) is prohibited without explicit
Publisher approval. Boston — Delft

Contents

1 Introduction 110

2 Basics of Differential Privacy 115
2.1 Definition & Properties 115
2.2 Databases & Distance Metrics 116
2.3 Basic Mechanisms . 118
2.4 Composition . 119
2.5 Advanced Mechanisms 124

3 Problem Definition 126
3.1 Queries & Query Workloads 127
3.2 Measuring Utility . 128
3.3 Threat Model . 130
3.4 What can be Learned Accurately 132
3.5 Additional Challenges of the Database Setting 132
3.6 Summary of Approaches 135

4 Mechanisms for Linear Queries 137
4.1 MWEM . 138
4.2 Matrix Mechanism . 140
4.3 Data-Aware/Workload-Aware (DAWA) Mechanism 143
4.4 Others . 145

5 Mechanisms for High-Dimensional Data 146
5.1 DualQuery . 147
5.2 PrivBayes . 150
5.3 HDMM . 153
5.4 PGM . 155

6 Mechanisms for Highly Sensitive Queries 157
6.1 Local Sensitivity . 158
6.2 Propose-Test-Release . 159
6.3 Smooth Sensitivity . 161
6.4 Sample & Aggregate . 163
6.5 Lipschitz Extensions . 165

7 Mechanisms for Multi-Relational Databases 168
7.1 Defining Privacy for Multi-Relational Databases 169
7.2 DP Systems for Multi-relational Databases 173
7.3 PINQ . 176
7.4 Flex . 178
7.5 PrivateSQL . 181
7.6 GoogleDP . 185

8 Frameworks for Differentially Private Analysis 187
8.1 ϵktelo . 189
8.2 APEx . 191

9 Eliminating the Trusted Data Curator 197
9.1 The Local Model . 199
9.2 The Shuffle Model . 202
9.3 Leveraging Secure Computation 203

10 Implementation Issues & Open Challenges 206
10.1 Privacy Definitions & Algorithm Design 206
10.2 System Implementation & Integration 209
10.3 Social Considerations . 210

References 214

Differential Privacy for Databases
Joseph P. Near1 and Xi He2

1University of Vermont; jnear@uvm.edu
2University of Waterloo; xi.he@uwaterloo.ca

ABSTRACT
Differential privacy is a promising approach to formalizing
privacy—that is, for writing down what privacy means as a
mathematical equation. This book is provides overview of
differential privacy techniques for answering database-style
queries. Within this area, we describe useful algorithms and
their applications, and systems and tools that implement
them.

Joseph P. Near and Xi He (2021), “Differential Privacy for Databases”, Foundations
and Trends® in Databases: Vol. 11, No. 2, pp 109–225. DOI: 10.1561/1900000066.

1
Introduction

Differential privacy is a promising approach to formalizing privacy—that
is, for writing down what privacy means as a mathematical equation.
The definition of differential privacy acts as a bridge between societal
notions of privacy and the mathematical properties of privacy-preserving
algorithms—we can prove that a specific algorithm satisfies differential
privacy, and then argue separately that the definition is a “good” ap-
proximation of society’s informal notions of privacy. Differential privacy
has been successful because it seems to serve particularly well in this
role—it is the best mathematical model of privacy that we know of.

This book is intended to serve as an overview of the state-of-the-
art in techniques for differential privacy. We focus in particular on
techniques for answering database-style queries, on useful algorithms
and their applications, and on systems and tools that implement them.
While we do describe the formal properties of the techniques we cover,
our focus is not on theoretical results.

What is privacy? In this book, we use the term privacy to refer to
situations in which an adversary is not able to learn too much about
any one individual. When the adversary learns too much about an

110

111

individual, we say that privacy has been lost. One trivial solution for
privacy is to prevent the adversary from learning anything—but this
approach makes it pointless to collect and analyze data in the first
place.

The techniques we explore in this book are ones that allow the
adversary to learn properties of the population while hiding information
specific to individuals. Such techniques allow us to learn useful informa-
tion from sensitive data, while at the same time protecting the privacy
of the individuals who contributed it.

What is privacy not? Privacy properties are often conflated with
security properties. Though they are related, they are distinct in im-
portant ways. Common security properties include confidentiality (that
an adversary learns nothing about the secret data) and integrity (that
an adversary is not capable of corrupting the system’s output).

Privacy-preserving algorithms do not necessarily satisfy either of
these properties. Differentially private algorithms intentionally reveal
some information to the adversary; the goal of differential privacy is to
control what can be learned from that information.

Similarly, techniques for enforcing security properties do not neces-
sarily ensure privacy. In particular, most techniques for security control
who can view the data—not what information they can learn from
it. Encrypting a dataset, for example, provides “all-or-nothing” access
to its information—those without the key learn nothing, while those
with the key learn everything, including information specific to indi-
viduals. Encryption, by itself, is not capable of making the distinction
described above between properties of the population and properties of
individuals.

However, security techniques can complement privacy techniques
in important ways. In particular, such techniques allow us to target
alternative threat models for differentially private algorithms. For ex-
ample, many systems for differential privacy collect raw sensitive data
on a central server, and assume the server will not be compromised.
If the server is hacked, however, then the guarantee of differential pri-
vacy may be violated. Encrypting this data may help ensure that only
differentially private results are ever made public—even if the server

112 Introduction

holding the data is compromised. Complementing differential privacy
thus allows us to adjust the threat model to protect against a stronger
adversary than before. We discuss combining differential privacy with
security techniques in Chapter 9.

Why differential privacy? Differential privacy is the latest in a series
of approaches for building privacy-preserving algorithms. The most
common technique for releasing data while preserving privacy is de-
identification (sometimes called anonymization), which involves remov-
ing identifying information from the data. De-identification appeals
to our intuitions about privacy, but numerous results suggest that re-
identification attacks on de-identified data are often possible (Sweeney,
2000; Dinur and Nissim, 2003).

More rigorous techniques, like k-Anonymity (Sweeney, 2002) and
ℓ-Diversity (Machanavajjhala et al., 2007), were developed to address
this shortcoming by quantifying the “uniqueness” of an individual
within a dataset. However, even these techniques are not compositional—
releasing a single k-Anonymized dataset might provide strong privacy
protection, but releasing two such datasets may enable an adversary to
re-identify individuals in the data.

Differential privacy is attractive because in addition to closely ap-
proximating our informal notions of privacy, it is compositional. Compo-
sitionality means that if two data releases individually provide certain
levels of differential privacy, then we can bound the cumulative privacy
loss of both releases. Differential privacy is the first rigorous approach
to privacy with this important property.

What does differential privacy protect? The goal of differential pri-
vacy is to make the following promise: if you participate in a differentially
private analysis of data, you will not suffer any additional harm as
a result. Roughly speaking, the mathematical definition of differential
privacy achieves this goal by requiring that the outcome of any differen-
tially private analysis is the same whether or not you participate (this
notion is formalized in Chapter 2).

Importantly, this guarantee does not necessarily prevent an adversary
from learning details about an individual—particularly when those

113

details could have been learned without the individual’s participation
in the analysis. For example, if a differentially private study concludes
that all people over age 50 enjoy playing tennis, then an adversary may
infer that a specific 52-year-old enjoys the sport. Differential privacy
does not prevent this situation, because it is possible whether or not
the specific 52-year-old participates in the study.

What are the limits of differential privacy? A clear tension tension
exists between revealing information about a dataset and protecting
the privacy of its individuals—revealing too many properties of the
data with too much accuracy must necessarily violate privacy. This
idea—now often called the database reconstruction theorem—imposes
upper bounds on what it is possible to learn before privacy is violated
(Dinur and Nissim, 2003). Navigating this tension is a key part of
designing differentially private algorithms, which typically have the
goal of releasing the most accurate possible statistics while preserving
privacy.

Why use differential privacy in database systems? Today’s informa-
tion systems collect and process vast amounts of data, and the majority
of it flows into databases (relational or otherwise). These database sys-
tems are specifically designed to collect, store, and query data, and have
been optimized for that task. If we would like to enable an analysis of
sensitive data with differential privacy, it is logical to develop techniques
that work for database systems, because that’s where the private data
is.

However, integrating differentially private techniques with database
systems presents significant challenges—many of which are discussed
later in this book. In particular, a primary goal of most database systems
is to abstract away execution details, so that analysts may focus on
the semantics of the queries they write instead of worrying about how
they will be executed. But satisfying differential privacy requires careful
control over the details of how a query is executed, which sometimes
breaks this abstraction.

The techniques covered in this book represent significant progress
towards building differentially private database systems. They differ in

114 Introduction

terms of their capabilities and the interfaces they present to the analyst,
and none matches perfectly with the traditional abstractions used in
relational databases. Indeed, significant challenges remain in achieving
that goal—we discuss these in Chapter 10—and we may never get all
the way there. On the other hand, the approaches described in this book
have already resulted in useful, deployable systems, and we hope they
will pave the way towards increasing adoption of differential privacy in
practice.

Summary & Additional resources. This book focuses on techniques,
algorithms, and systems for answering database-style queries with differ-
ential privacy. This area is just one part of the larger field of research in
differential privacy. For an introduction to the theoretical foundations
of differential privacy, we refer the reader to the excellent reference by
Dwork & Roth (Dwork, Roth, et al., 2014). We provide additional ref-
erences to more detailed descriptions of smaller sub-areas of differential
privacy throughout this book.

The rest of the book is organized into three parts. The first part de-
fines our setting and provides background: Chapter 2 describes the basics
of differential privacy, and Chapter 3 describes databases and queries.
Section 3.6 summarizes the specific techniques covered in the book. The
second part—Chapters 4, 5, 6, and 7—describes specific techniques,
categorized by application area. The third part describes progress and
challenges in building differentially-private systems: Chapter 8 describes
frameworks for building such systems, Chapter 9 describes the use
of security techniques to support privacy, and Chapter 10 discusses
implementation issues and open challenges.

2
Basics of Differential Privacy

2.1 Definition & Properties

Differential privacy (Dwork, 2006; Dwork et al., 2006b) is a property of
a mechanism M, a randomized algorithm whose input is a database of
records. It is written in terms of two neighboring databases, which are
databases that differ in exactly one individual’s data (more on databases
and the distance between them in Section 2.2).

Definition 2.1 (Differential Privacy). Let ϵ, δ be positive real number
and M be a randomized algorithm that takes a database as input.
The algorithm M is said to provide (ϵ, δ)-differential privacy if, for
all datasets D1 and D2 that differ on a single element, and all S ⊆
Range(M),

Pr[M(D1) ∈ S] ≤ eϵ Pr[M(D2) ∈ S] + δ, (2.1)

where the probability is taken over the randomness used by the algo-
rithm.

If δ = 0, we say that M is ϵ-differentially private. The values of δ
are typically set less than the inverse of any polynomial in the size of
the database.

115

116 Basics of Differential Privacy

Differential privacy is immune to post-processing: A data analyst,
without additional knowledge about the private database, cannot com-
pute a function of the output of a private algorithm M and make it
less differentially private.

Proposition 2.1. LetM be a randomized algorithm that satisfies (ϵ, δ)-
differential privacy. Let f be an arbitrary data-independent function f

which takes the output of M as input. Then the composed algorithm
f ◦M is (ϵ, δ)-differentially private.

Differential privacy can be directly extended to group privacy to
protect the privacy of a group, for example, a family in a survey.

Theorem 2.1. Any (ϵ, 0)-differentially private mechanism M is (kϵ, 0)-
differentially private for groups of size k.

This property also holds for (ϵ, δ)-differential privacy, except the
approximation term δ has a big amplification factor ke(k−1)ϵ instead of
k, for a group of size k.

2.2 Databases & Distance Metrics

In the differential privacy literature, a database D ∈ D is typically a
single table of records (or tuples) drawn from some universe X (Dwork,
Roth, et al., 2014). Multi-relational databases are less common, though
differential privacy has also been studied in this case (see Chapter 7).
Databases can be represented using a multiset of records (or “bag of
records”), but the differential privacy literature often considers other rep-
resentations for convenience. Two common examples are the histogram
representation and the vector representation, described below.

Differential privacy is designed around the concept of neighboring
databases—databases which differ on the data of a single individual.
The definition requires a mechanism to produce similar outcomes for
neighboring database inputs, making it impossible to determine whether
any particular individual participated or not.

In the most common definition of neighboring databases, we assume
that each individual contributes exactly one row to the database—so

2.2. Databases & Distance Metrics 117

neighboring databases differ in one row. This definition has been gener-
alized in the literature based on a distance metric d over the database
domain (Chatzikokolakis et al., 2013; Kifer and Machanavajjhala, 2014;
He et al., 2014). Here we present two key differential privacy notions
that are formed by different distance metrics. Two databases D1 and
D2 are considered neighbors under a distance metric d if d(D1, D2) = 1,
and the set of neighboring databases given the database domain D is
denoted by Nd(D). Note that this set Nd(D) does not only include pairs
of neighbors formed with the true instance D, but all possible databases
in the domain D.

Unbounded differential privacy. In unbounded differential privacy,
neighboring databases are formed by adding or removing a tuple
in the database. Under this definition, neighboring databases differ
in their size. Work in this setting often models the database as a
histogram h(D) ∈ N|X |, in which each entry h(D)[j] represents the
number of elements in the database D of type j ∈ X . In the histogram
representation, the distance between two databases D1 and D2 is defined
to be the l1 distance between them, i.e., dunbounded(D1, D2) = ∥h(D1)−
h(D2)∥1.

Bounded differential privacy. In bounded differential privacy, neigh-
boring databases are formed by changing the value of exactly one
tuple. In this setting, both datasets have a fixed size n (i.e. neighboring
databases are of the same size). Work in this setting often models the
database as a vector D ∈ X n, in which D[i] represents the data con-
tributed by user i. The distance between two databases D1, D2 ∈ X n is
d(D1, D2) = |{i | D1[i] ̸= D2[i]}|.

Choosing a Distance Metric. The choice of a distance metric for
databases is an extremely important—and often overlooked—part of
the differential privacy guarantee. Different choices for the metric can
change the guarantee completely. For example, unbounded differential
privacy implies bounded differential privacy, but the reverse does not
hold. If the chosen distance metric does not accurately model the

118 Basics of Differential Privacy

presence or absence of an individual in the database, then even a correct
differentially private mechanism may fail to protect the privacy of an
individual in the real world. This issue is even more challenging in the
multi-relational setting, where the presence or absence of an individual
may affect many records in the database (see Chapter 7 for more).

2.3 Basic Mechanisms

2.3.1 Randomized Response

Randomized response (Warner, 1965; Dwork, Roth, et al., 2014) is a sim-
ple mechanism developed in the social sciences to approximate frequency
of embarrassing or illegal behaviors. This mechanism is shown differ-
entially private. For example, given a question “do you have property
P?”, the respondent will respond truthfully with probability p. Hence,
there is a probability (1− p) to get a false response. The randomized
response mechanism satisfies ϵ-differential privacy, where ϵ = | ln(p

1−p)|.
Variants of randomized response have been developed to infer answers
to aggregate queries (Erlingsson et al., 2014; Wang et al., 2019).

2.3.2 The Laplace Mechanism

Consider numeric queries f : D → Rk that map databases to k real
numbers. The Laplace mechanism adds noise to the query answer. An
important parameter that determines the amount of noise to ensure
differential privacy is the l1-sensitivity of the query (Dwork, 2006; Dwork
et al., 2006b).

Definition 2.2 (l1-sensitivity). The l1-sensitivity of a function f : D →
Rk is

∆1f = max
(D1,D2)∈Nd(D)

∥f(D1)− f(D2)∥1. (2.2)

This parameter of query measures the largest possible change to the
query answer between any pairs of neighboring databases.

Theorem 2.2 (The Laplace Mechanism). Given a numeric query f :
D → Rk, the Laplace mechanism adds to the query answer f(D) with

2.4. Composition 119

a vector (η1, · · · , ηk), where ηi are i.i.d. random variables drawn from
the Laplace distribution centred at 0 with scale b = ∆1f/ϵ, denoted by
Lap(b). The Laplace mechanism preserves (ϵ, 0)-differential privacy.

2.3.3 The Gaussian Mechanism

When allowing δ > 0 for differential privacy, Gaussian mechanism
(Dwork et al., 2006a; Dwork, Roth, et al., 2014) can be applied.

Definition 2.3 (l2-sensitivity). The l2-sensitivity of a function f : D →
Rk is

∆2f = max
(D1,D2)∈Nd(D)

∥f(D1)− f(D2)∥2. (2.3)

Theorem 2.3 (The Gaussian Mechanism). Given a numeric query f :
D → Rk, let ϵ ∈ (0, 1). For c2 > 2 ln(1.25/δ), the Gaussian mechanism
adds to the query answer f(D) with a vector (η1, · · · , ηk), where ηi are
i.i.d. random variables drawn from N (0, σ2), where σ > c∆2f/ϵ. The
Gaussian mechanism preserves (ϵ, δ)-differential privacy.

2.3.4 The Exponential mechanism

Given some arbitrary range R, the exponential mechanism (McSherry
and Talwar, 2007) is defined with respect to some utility function
u : D×R → R, which maps database and output pairs to utility scores.
For a fixed database D, a better output from R should have a larger
score. The sensitivity of the utility score is defined as

∆u = max
r∈R

max
(D1,D2)∈Nd(D)

|u(D1, r)− u(D2, r)|. (2.4)

Theorem 2.4 (The Exponential Mechanism). The exponential mechanism
takes in the database D ∈ D and score function u : D ×R → R, and
outputs an element r ∈ R with probability proportional to exp(ϵu(r,D)

2∆u).
This mechanism satisfies (ϵ, 0)-differential privacy.

2.4 Composition

Differential privacy is compositional—that is, running a differentially pri-
vate mechanism twice also satisfies differential privacy, but at increased

120 Basics of Differential Privacy

privacy cost. The compositionality of differential privacy separates it
from a number of other privacy notions, including de-identification and
k-anonymity. In both of those cases, two separate releases of data may
individually satisfy the desired property, but may violate the property
when taken together. Two differentially private releases of data, in
contrast, may result in increased privacy cost, but will always satisfy
differential privacy for some value of ϵ.

2.4.1 Sequential Composition

The sequential composition property of differential privacy (Dwork,
2006) says that the privacy cost of running two differentially private
mechanisms on the same input data is simply the sum of their individual
privacy costs.

Theorem 2.5 (Sequential Composition). If there are k independent mech-
anisms M1, . . .Mk, whose privacy guarantees are (ϵ1, δ1), . . . , (ϵk, δk)
differential privacy, respectively, then any function g of them: g(M1, · · · ,
Mk) is (∑k

i=1 ϵi,
∑k

i=1 δi)-differentially private.

Sequential composition allows running multiple differentially private
analyses on the same input data. For example, the U.S. Census releases
numerous summaries of the data they collect, each of which can be
expressed using a differentially private query on the collected data.
Sequential composition allows bounding the total privacy cost for each
census participant when all of these summaries are released publicly.

Sequential composition also enables the the development of more
advanced privacy-preserving algorithms that use multiple differentially
private mechanisms to perform their tasks. The sequential composition
result holds even if the k mechanisms and their privacy budgets are
adaptively chosen. For example, MWEM (discussed in Chapter 4) is an
iterative algorithm that applies the Laplace mechanism many times to
converge on a synthetic representation of the input data; its total privacy
cost is bounded by repeated application of the sequential composition
property.

Definition 2.5 provides an upper bound on the privacy cost of
composing multiple arbitrary differentially private mechanisms, but

2.4. Composition 121

this bound is not necessarily tight for a particular combination of
mechanisms. Some mechanisms (e.g. Report Noisy Max, discussed in
Section 2.5.1) can be analyzed via sequential composition, but a more
specific analysis of their behavior yields a lower privacy cost than
sequential composition does.

When mechanisms are applied to disjoint subsets of data, the pri-
vacy loss is analyzed with a tighter bound (McSherry, 2009). Consider
unbounded differential privacy, the total privacy loss is bounded by
the maximum privacy budget consumed by any single one of these
mechanisms. This is known as parallel composition.

2.4.2 Advanced Composition

An alternative composition property, often called advanced composition
(Dwork, Roth, et al., 2014), allows a mechanism designer to tune the
tradeoff between the privacy parameters ϵ and δ. In exchange for a
small increase in δ, advanced composition allows for a large decrease in
ϵ. Advanced composition often yields a lower value for ϵ than sequential
composition for iterative algorithms that perform a large number of
differentially private operations.

Theorem 2.6 (Advanced Composition). For 0 < ϵ′ < 1 and δ′ > 0,
the class of (ϵ, δ)-differentially private mechanisms satisfies (ϵ′, kδ + δ′)-
differential privacy under k-fold adaptive composition (e.g. a loop with
k iterations) for ϵ′ = 2ϵ

√
2k log(1/δ′).

Advanced composition requires the use of (ϵ, δ)-differential privacy
(the definition requires δ′ > 0), so it cannot be used when ϵ-differential
privacy is preferred. In addition, while advanced composition can gener-
ally provide lower values of ϵ when k is large, it is actually much worse
than sequential composition (due to constant factors) when k is small
(e.g. less than 100).

2.4.3 Variants of Differential Privacy with Improved Composition

In addition to ϵ and (ϵ, δ)-differential privacy, other variants of differ-
ential privacy with significant benefits have recently been developed.
Three examples are Rényi differential privacy (RDP) (Mironov, 2017),

122 Basics of Differential Privacy

zero-concentrated differential privacy (zCDP) (Bun and Steinke, 2016),
and truncated concentrated differential privacy (tCDP) (Bun et al.,
2018). Each one has different privacy parameters and a different form
of sequential composition. The basic mechanism for RDP and zCDP
is the Gaussian mechanism; tCDP uses the sinh-normal mechanism
which decays more quickly in its tails. All three can be converted
to (ϵ, δ)-differential privacy, allowing them to be compared and com-
posed with each other, and are closed under post-processing. All three
variants discussed in this section provide two important benefits over
(ϵ, δ)-differential privacy:

• They eliminate the “catastrophic” privacy failure that is allowed
with probability δ under (ϵ, δ)-differential privacy.

• They automatically provide asymptotically tight bounds on pri-
vacy cost under composition when the Gaussian mechanism is
used.

Rényi Differential Privacy (RDP). Rényi differential privacy (RDP)
(Mironov, 2017) is a relaxation of pure ϵ-differential privacy that works
by bounding Rényi divergence. RDP implies (ϵ, δ)-differential privacy,
but not the reverse; RDP admits the Gaussian mechanism, but does not
allow any mechanism that results in a “catastrophic” privacy failure.

The Gaussian mechanism with σ2 = ∆2
2α/(2ϵ) provides (α, ϵ)-RDP

for a value with l2 sensitivity ∆2. For mechanisms M1 and M2 which
provide (α, ϵ1) and (α, ϵ2)-RDP, respectively, their sequential composi-
tion provides (α, ϵ1+ϵ2)-RDP. This bound is tight for composition of the
Gaussian mechanism automatically—no separate advanced composition
theorem is needed. RDP is closed under post-processing.

Zero-Concentrated Differential Privacy (zCDP). Like RDP, zero-
concentrated differential privacy (zCDP) (Bun and Steinke, 2016) lever-
ages Rényi divergence to provide tighter bounds on composition for the
Gaussian mechanism, but it considers all αs simultaneously and thus has
only a single privacy parameter (called ρ). Like RDP, zCDP prevents
“catastrophic” privacy failures, admits the Gaussian mechanism, and is
closed under post-processing.

2.4. Composition 123

The Gaussian mechanism with σ2 = ∆2
2/(2ρ) provides ρ-zRDP for a

value with l2 sensitivity ∆2. For mechanismsM1 andM2 which provide
ρ1 and ρ2-zCDP, respectively, their sequential composition provides
(ρ1 + ρ2)-zCDP. As in RDP, tight composition is automatic.

Truncated CDP (tCDP). Truncated concentrated differential privacy
(tCDP) (Bun et al., 2018) also bounds Rényi divergence, but relaxes
the original definition of CDP to permit privacy amplification via sub-
sampling. tCDP retains the other benefits of zCDP—tight composition,
closure under post-processing, and no “catastrophic” privacy failure.

The basic mechanism of tCDP is the sinh-normal mechanism. For a
value with l2 sensitivity ∆2, adding noise drawn from

8∆2ω arsinh
(1

8∆2ω
N

(
0, ∆2

2
2ρ

))
provides (ρ, ω)-tCDP. For mechanisms M1 and M2 which provide
(ρ1, ω1) and (ρ2, ω2)-tCDP, respectively, their sequential composition
provides (ρ1 + ρ2,min(ω1, ω2))-tCDP. Tight composition is automatic.

Choosing a Variant. Due to their tight composition bounds, the use
of these variants can reduce privacy cost significantly—especially for
iterative algorithms that use the Gaussian mechanism. For example,
machine learning algorithms that add Gaussian noise to calculated
gradients (Abadi et al., 2016) often run for thousands of iterations, and
using a privacy variant based on Rényi divergence provides much tighter
bounds on the privacy cost of these algorithms than either standard or
advanced composition.

For algorithms that are not iterative, or that perform only a few iter-
ations, the privacy variants discussed in this section provide little benefit
over pure ϵ-differential privacy. For algorithms that use the Gaussian
mechanism (and thus do not satisfy pure ϵ-differential privacy), these
variants provide the benefit of eliminating the chance of a “catastrophic”
privacy failure. And for iterative algorithms, these variants provide the
additional benefit of significantly tighter bounds under composition.

A small handful of techniques require the ability to fail catastroph-
ically (e.g. Propose-Test-Release, discussed in Chapter 6), and thus

124 Basics of Differential Privacy

require the use of (ϵ, δ)-differential privacy. For algorithms that do not
use these techniques, the privacy variants in this section should be
considered.

2.5 Advanced Mechanisms

Consider m counting queries (f1, . . . , fm) which has a high l1-sensitivity
equal to m at worst case. If m is large, then Laplace mechanism will add
much noise to the counts. Besides applying the advanced composition
techniques, there are several scenarios where we can apply specialized
techniques to offer better utility.

2.5.1 Report Noisy Max

The first scenario is when the analyst is only interested in the maximum
count and its index. A simple algorithm with more utility guarantees can
be used. This algorithm is known as report noisy max. This algorithm
adds independently generated Laplace noise Lap(1/ϵ) to each count
and returns the index of the largest noisy count. A much smaller noise
is injected into the count, but this algorithm has shown to satisfy
(ϵ, 0)-differential privacy.

A generalized algorithm for reporting top-k is proposed by Lee and
Clifton, 2014, where Laplace noise Lap(k/ϵ) is added to each count.
This algorithm also satisfies (ϵ, 0)-differential privacy. Compared to the
Laplace mechanism that releases all the counts of the m queries for
the top-k answers, the Report Noisy Max algorithm adds much smaller
noise and hence a better utility under the same privacy guarantee.

2.5.2 The Sparse Vector Technique

The second scenario is for the online setting, when the analyst only
cares to know the identities of the counting queries that lie above a
certain threshold T . A simple technique known as the sparse vector
technique (Dwork et al., 2009) supports this online scenario and its
privacy loss only depends on the number of queries which actually lie
above the threshold, rather than with the total number of queries tested.

2.5. Advanced Mechanisms 125

This saves much privacy cost especially when the number of queries lie
above the threshold is much smaller than the total number of queries.

First, we present the algorithm when only one above-threshold
query is returned. This algorithm takes in a private database D, an
adaptively chosen stream of counting queries f1, . . ., a threshold T .
This algorithm first adds Laplace noise Lap(2/ϵ) to the threshold T

to get noisy threshold T̃ . For each query fi, add independent Laplace
noise Lap(4/ϵ) to fi(D). If the noisy answer is greater than T̃ , then
output ⊤ and halt the algorithm; otherwise, output ⊥ and continue
with the next query. This algorithm is also called AboveThreshold and
is (ϵ, 0)-differentially private.

To output more than one above-threshold query, the general Sparse
Vector Technique repeats the AboveThreshold algorithm whenever an
above-threshold query is reported. Consider a cutoff point k for the
number of above-threshold queries. The noise added to the threshold T
is Lap(2k/ϵ) and the noise added to each query answer is Lap(4k/ϵ).
When k above-threshold queries are reported, the algorithm halts. This
algorithm achieves (ϵ, 0)-differential privacy.

3
Problem Definition

This book focuses on approaches for ensuring differential privacy in
database systems. This chapter defines the common framework for
these techniques, and the challenges specific to the database setting.
Specifically:

• Section 3.1 defines the different kinds of queries supported by the
techniques discussed in this book

• Section 3.2 describes how accuracy is measured in the setting of
differential privacy for databases

• Section 3.3 describes the threat model—the capabilities of the
adversary we are trying to protect against

• Section 3.4 discusses the kinds of queries for which accurate an-
swers can typically be obtained while maintaining privacy

• Section 3.5 describes additional challenges specific to systems for
differential privacy in the database setting

• Section 3.6 provides a roadmap for the rest of the book

126

3.1. Queries & Query Workloads 127

3.1 Queries & Query Workloads

Generally speaking, a query can be any function of the database f :
D → A. Most commonly, we will be concerned with queries that output
a number or vector of numbers (i.e. f : D → Rk). In a database system,
queries are typically specified using some query language (e.g. SQL).
Languages like SQL make it easy to specify certain kinds of queries;
a typical aggregation query written in a language like SQL (e.g. a
SELECT query using the COUNT, SUM, or AVG aggregation functions) can
be expressed as a function whose input is the database and whose
output is a real number or vector of real numbers.

However, a standard SQL GROUP BY aggregation query and hence
OLAP styled queries do not directly fit this category of queries because
the query answer includes not only the aggregation but also the GROUP
BY keys (or active domain values) which might be private. Database
systems that support differential privacy have to distinguish the standard
GROUP BY aggregation that leaks active domain and a full domain based
GROUP BY aggregation that reports the frequency counts of the full
domain values. We highlight how the database systems handle this type
of aggregation in Chapter 7.

Multi-relational queries represent an important exception, since we
assume that our database representation contains just a single relation.
As a result, queries with joins cannot be expressed as functions of a
single database. The queries involving joining face multiple challenges
in defining privacy objects among the multiple relations and high global
sensitivity. We discuss several approaches for extending the guarantee
of differential privacy to multi-relational queries in Chapter 7.

The techniques covered here use a variety of representations for
queries, from the fully general “query-as-a-function” abstraction pre-
sented above, to SQL and subsets of it, to special-purpose representa-
tions for particular classes of queries. For each technique, we therefore
include a brief description of the class of queries supported and the
representation used.

Linear queries. The class of linear queries has been the target of a con-
siderable amount of research on differential privacy, and the techniques

128 Problem Definition

discussed in Chapter 4 are specifically focused on this class. A linear
query is a function of a single relation that can be expressed as a linear
combination of row counts, where a “row count” refers to the number
of times a particular row occurs in the relation. Many commonly-used
queries are linear queries, including counting queries and summation
queries.

In the “histogram” representation of a database, each element xi of
the histogram explicitly records the number of occurrences of the tuple
value associated with i; a linear query is simply a linear combination of
xis. For example, to count the number of rows in the relation, we can
simply assign each xi a coefficient of 1.

Many of the techniques described in Chapter 4 use variants of the
histogram representation, and represent linear queries using vectors
of the coefficients for the corresponding linear combination. Thus our
counting query example would be represented by a vector containing
all 1s.

Query workloads. A query workload is simply a set of queries. In cases
where the important queries are known ahead of time, it is common to
record them together in a workload, and answer them all at once.

For certain classes of queries, answering the whole workload at once
can yield much higher accuracy than answering each one in sequence
and using sequential composition to bound the total privacy cost. This
is especially true for workloads of linear queries, where the improvement
in accuracy can be substantial. Most of the techniques presented in
Chapter 4 follow this pattern, and are designed to answer an entire
workload of linear queries at once.

3.2 Measuring Utility

The term utility refers to the degree to which a computed result is useful
to the analyst. Utility is therefore dependent not only on the data and
the function being computed, but also on the analyst’s needs. In some
cases, differentially private analysis results will be useful to the analyst
even if they contain significant error; in other cases, the results need to
be extremely close to the true answers in order to be useful.

3.2. Measuring Utility 129

Accuracy measures how close the differentially private result is to a
result computed without differential privacy, and is thus independent of
the analyst’s needs. Most of the differential privacy literature measures
accuracy as a proxy for utility, under the assumption that more accurate
results will tend to be more useful for most analysts.

Accuracy bounds for differential privacy mechanisms are often given
in the (α, β)-accuracy framework, where α represents an upper bound
on absolute error and β represents the probability that this upper bound
is violated.

Definition 3.1. Given a numeric query f : D → Rk and a differentially
private mechanism Mf : D → Rk, we say that M is (α, β)-accurate if:

Pr[∥f(D)−Mf (D)∥∞ ≥ α] ≤ β (3.1)

The accuracy of a differentially private mechanism is usually directly
related to the privacy parameter. For example, the accuracy of the
Laplace mechanism for general queries can be measured based on the
fact that Pr[|η| ≥ t · b] = e−t, where η is drawn from Lap(b) with a
union bound.

Theorem 3.1. Given a numeric query f : D → Rk, the Laplace mecha-
nism is (α, β)-accurate for α = ln(k

β) · (∆1f
ϵ). In other words, let y be

an output of Laplace mechanism that satisfies (ϵ, 0)-differential privacy.
Then, ∀β ∈ (0, 1]:

Pr[∥f(D)− y∥∞ ≥ ln(k
β

) · (∆1f

ϵ
)] ≤ β (3.2)

The larger the privacy parameter ϵ is, the bigger distance between
the true answer and the output mechanism with the same probability.
This distance ∥f(D)−y∥∞ also depends on the sensitivity of the function
∆1f and hence a highly sensitive query requires more perturbation in
function output. A similar expression can be derived for the Gaussian
mechanism based on the CDF of the normal distribution.

The accuracy for numeric queries is also commonly measured in
terms of the expected total errors E[∥f(D) − y∥22]. Given a numeric
query f : D → Rk, the total error for the Laplace mechanism with

130 Problem Definition

noise drawn from Lap(b)k is 2k · b2 and the total error for the Gaussian
mechanism with noise drawn from N (0, σ2)k is k · σ2.

For the exponential mechanism, the accuracy is measured to the
set of outputs with the best utility score. Given the utility function u :
D ×R → R and database instance D, let OPTu(D) = maxr∈R u(D, r).

Theorem 3.2. Given a database D, let ROPTu = {r ∈ R : u(D, r) =
OPTu(D)} denote the set of elements in R which attain utility score
c. Let y be an output of an exponential mechanism based on u that
satisfies (ϵ, 0)-differential privacy, then

Pr[u(D, y) ≤ OPTu(D)− 2∆u
ϵ

(ln(|R|
|ROPTu |

) + t)] ≤ e−t (3.3)

This theorem bounds the probability that the exponential mechanism
returns a “good” element of R, where good is measured in terms of
OPTu. The result is that it will be highly unlikely that the returned
element y has a utility score that is inferior to OPTu(D) by more than
an additive factor.

3.3 Threat Model

The definition of differential privacy is written in terms of a “database”
containing many individuals’ data. How this database is designed, stored,
and processed in an actual system has a significant effect on the security
and privacy guarantees actually achieved by the system. We introduce
the central model of differential privacy here, since it is assumed in most
of the techniques covered in this book; we discuss alternative threat
models in Chapter 9.

Central model. The central model of differential privacy assumes the
existence of a trusted data curator—an entity which collects sensitive
data from individuals and stores all of it (without any added noise) in
a database. The data curator is trusted to keep the data secure, and to
execute mechanisms over it.

In the central model, the malicious party is the analyst—the party
that receives the final output of a differentially private mechanism.

3.3. Threat Model 131

The analyst may use this output to try to infer information about the
participants in the database.

The major advantage of the central model is accuracy. In the central
model, data from many individuals can be aggregated before adding
noise, which means that the scale of the noise added to the results is
much smaller than the scale of the “signal” generated by aggregating
the data. As we will describe in the next section, the local model is
significantly worse in this regard.

The disadvantage of the central model is the requirement for a
trusted data curator, which is often impossible to satisfy in practice.
For example, if a company abuses access to sensitive data it collects
from its customers, then we probably should not trust that company to
act as a trusted data curator, even if they promise to use differential
privacy. Furthermore, even trustworthy data curators can be subject to
data breaches, which, in the central model, would result in revealing all
of the sensitive data.

Other models. The most common alternative to the central model is
the local model of differential privacy, in which each participant adds
noise to their data locally—before it leaves their control. In the local
model, the data curator collects noisy data from each participant; each
participant’s data independently satisfies differential privacy due to the
noise added before it is collected. As a result, the differential privacy
property holds in the local model even if the data curator is malicious.
The downside of the local model is that it provides far less accuracy
than the central model.

Other models have been developed to navigate the tradeoff between
these two extremes. The hybrid or shuffle model uses an anonymous
communication channel to amplify privacy, and techniques for secure
computation apply cryptography to obtain the utility of the central
model with the security of the local model. Both approaches are dis-
cussed in Chapter 9.

132 Problem Definition

3.4 What can be Learned Accurately

Broadly speaking, differential privacy works best for robust statistics.
Robust statistics are not affected much by outliers, so they are also not
affected much by differential privacy’s hypothetical addition or removal
of a single data element. Commonly-used examples include counting,
summation, and average queries. In the database setting, approaches for
differential privacy are often considered in terms of which of the standard
SQL aggregation functions—COUNT, SUM, AVG, MIN, and MAX—can be
supported.

COUNT, SUM, and AVG. The first three aggregation functions are com-
mon targets for differentially private analysis. Counting queries are
particularly well-suited: their sensitivity and accuracy properties are
easy to analyze, and they often yield good accuracy. Given an upper
bound on the values a data element can take (which can be enforced
via top-coding), summation queries are similarly simple to handle. Av-
erage queries can be implemented as a combination of two queries: a
summation and a count. All three classes are commonly implemented
in systems for differential privacy (see Chapter 8 for more).

MIN and MAX. MIN and MAX queries are much more challenging under
differential privacy, because the answers to these queries depend entirely
on a single data element. As a result, producing differentially private
answers to these queries while maintaining high accuracy is impossible,
and systems for differential privacy typically do support these queries
directly. Instead, some systems offer support for percentile queries or
other means of estimating the scale of the data (see Chapter 8 for more).

3.5 Additional Challenges of the Database Setting

Existing relational database systems often appear to be good targets
for differential privacy—at first glance, it should be possible to layer pri-
vacy protection on top of these systems without changing the interface
presented to the analyst or the functionality of the system. However,
this setting produces several unique challenges that have slowed the

3.5. Additional Challenges of the Database Setting 133

broad adoption of differential privacy in relational databases, and de-
serve careful consideration in any practical deployment. We summarize
the major challenges here, and provide more extensive discussion in
Chapters 8 and 10.

Privacy budget. The definition of differential privacy is given in terms
of a single privacy parameter ϵ, but a practical database system may
answer thousands or millions of queries. The maximum cumulative ϵ
allowed by the system for all of these queries is often called the privacy
budget. The simplest approach is to add up the ϵ values for each of the
queries processed by the system (by sequential composition), and stop
answering queries when this sum exceeds the budget. However, this
approach quickly exhausts the budget in practice. Much of the research
in differential privacy is dedicated towards solving this problem—for
example, the improved composition bounds mentioned in Chapter 2
improve privacy budget use directly, while the techniques for answering
linear queries described in Chapter 4 aim to give better accuracy for the
same value of ϵ, which improves budgeting indirectly. See Chapters 8
and 10 for more discussion.

Joins. Relational joins are extremely common in modern databases,
but present a major challenge for differential privacy. In particular,
producing tight bounds on the sensitivity of a query with joins is
extremely challenging—the best bounds depend on the data itself, and
the worst-case is much worse than the average-case. We discuss several
state-of-the-art techniques for addressing this challenge in Chapter 7;
however, the ability to answer join queries with high accuracy remains
a major mismatch between the expectations of database users and the
limits of our knowledge about differential privacy.

Data domains and GROUP BY. Techniques for ensuring differential pri-
vacy typically assume that the complete domain for each data attribute
is static and known ahead of time. Database systems, on the other
hand, typically do not enumerate the domain for each data element. For
example, an analyst might write the following SQL query to construct

134 Problem Definition

a histogram that counts occurrences of each element of the domain of
the column C:

SELECT C, COUNT(*)
FROM T
GROUP BY C

The output of such a query will contain a row—a histogram “bin”—
only for values of C that actually occur in the database. This semantics
presents a challenge for differential privacy: it means that the presence or
absence of the bin itself communicates information about the underlying
data.

Systems for differential privacy typically address this issue by requir-
ing the data curator to enumerate the domain of each data attribute,
and ensure that the results of histogram queries contain bins for each
value in the domain (even if the count for the value is zero). This
mismatch in semantics can raise challenges in implementations and can
be surprising to analysts.

Database updates. The majority of work on differential privacy as-
sumes a static, unchanging database. The existing systems for differen-
tially private analysis are most easily applied to static datasets; the US
Census Bureau’s use of differential privacy (Abowd, 2018) is a perfect
example, because Census data is collected once and does not change
thereafter. In practice, however, databases are often updated continu-
ously. We discuss the handful of techniques developed for this setting
in Chapter 10.

Side-channel attacks. Even when a technique has been proven to
ensure differential privacy, its implementation may fail to satisfy the
definition. A classic example is the floating-point vulnerability in the
Laplace mechanism (Mironov, 2012): the mathematical definition of the
Laplace mechanism satisfies ϵ-differential privacy, but implementations
of it may not, due to imprecision in floating-point arithmetic. Timing
attacks—in which a query’s execution time may reveal something about
the private data it analyzes—are also possible, and most systems for

3.6. Summary of Approaches 135

Table 3.1: Approaches Covered in the Book

Name Application §
MWEM Linear queries 4.1
Matrix mechanism Linear queries 4.2
DAWA Linear queries 4.3

DualQuery High-dimensional data 5.1
PrivBayes High-dimensional data 5.2
HDMM High-dimensional data 5.3
PGM High-dimensional data 5.4

Propose-test-release High global sensitivity 6.2
Smooth sensitivity High global sensitivity 6.3
Sample & aggregate High global sensitivity 6.4
Lipschitz extensions High global sensitivity 6.5

PINQ Multi-relational data 7.3
Flex Multi-relational data 7.4
PrivateSQL Multi-relational data 7.5

ϵktelo Framework 8.1
APEx Framework 8.2

differential privacy do not attempt to prevent them. We discuss these
issues in more detail in Chapter 8.

3.6 Summary of Approaches

The rest of this book is organized into chapters that describe tech-
niques specific to an application area. Table 3.1 categorizes the specific
techniques we cover and lists the application of each one.

• Chapter 4 describes techniques for workloads of linear queries
over a single table. These techniques attempt to minimize the
total error over the entire workload.

• Chapter 5 describes techniques for answering workloads of linear
queries in the context of high-dimensional data in a single table.
The best techniques in this setting differ significantly from the
low-dimensional setting.

136 Problem Definition

• Chapter 6 describes techniques that work well when global
sensitivity is high (for example, queries with joins or queries over
graphs).

• Chapter 7 describes techniques specific to multi-relational data
(including queries with joins). Many of these techniques adapt
ideas from Chapter 6.

Finally, Chapter 8 describes frameworks for designing differentially
private systems, and Chapter 9 discusses alternative threat models in
detail. Chapter 10 describes open challenges in the area of differential
privacy.

4
Mechanisms for Linear Queries

As described earlier, a linear query is one that can be expressed as a
linear combination of the counts of values in the database. When the
database is represented by a histogram h(D) ∈ N|X |, each entry h(D)[j]
is the count of tuple value j ∈ X , and a linear query is one that can be
expressed as a linear combination of the counts in h(D).

This chapter describes differentially private algorithms for workloads
of linear queries on a single database table. This setting is both relevant
in practice and highly suited for differential privacy, and a number of
effective algorithms exist. We describe three exemplars that characterize
the space of research in this area: the Multiplicative Weights with Expo-
nential Mechanism (MWEM) (Hardt et al., 2012) algorithm, the Matrix
Mechanism (MM) (Li et al., 2015), and the Data-Aware/Workload-
Aware (DAWA) mechanism (Li et al., 2015).

These approaches work by constructing explicit histogram represen-
tations for the data, so they struggle with high-dimensional data. These
algorithms are best for one- or two-dimensional data—a significant
limitation in practice. Chapter 5 describes algorithms that address this
limitation.

137

138 Mechanisms for Linear Queries

4.1 MWEM

The Multiplicative Weights with Exponential Mechanism (MWEM)
algorithm (Hardt et al., 2012) is a workload-aware data-dependent algo-
rithm for constructing a differentially private synthetic approximation
of a private dataset. The algorithm iteratively improves the synthetic
approximation by posing differentially private queries on the private
data and using the results to update the synthetic approximation with
the multiplicative weights update rule.

For a workload Q of linear queries and a private database D, the
algorithm initializes an approximation A randomly. Then, each iteration
of the algorithm performs the following steps:

1. Exponential mechanism: select a query qi ∈ Q for which the
approximation A is “worst” (i.e. arg maxqi∈Q|qi(A)−qi(D)|) using
the exponential mechanism.

2. Laplace mechanism: calculate a differentially private measurement
mi for qi(D) using the Laplace mechanism.

3. Multiplicative weights: update A using the measurement mi ac-
cording to the multiplicative weights update rule.

The algorithm runs for T iterations, and its output is the final value
of A (or the average of its values at all iterations). The privacy of
the MWEM algorithm follows from the properties of the Laplace and
exponential mechanisms. If we use a privacy parameter of ϵ

2T for each of
steps (1) and (2), then by sequential composition, the total privacy cost
for the algorithm after T iterations is ϵ. The update in step (3) uses
only the differentially private measurement mi and the approximation
A, so it satisfies differential privacy by post-processing.

Theorem 4.1. The MWEM algorithm satisfies (ϵ, 0)-differential privacy.

Exponential and Laplace mechanisms. Step (1) is used to select a
query from the workload Q for which the approximation performs badly.
To do this, the algorithm uses the exponential mechanism (with privacy

4.1. MWEM 139

parameter ϵ
2T) with the following score function, which assigns high

scores to queries for which the approximation produces high error:

s(D, q) = |q(A)− q(D)|

Step (2) simply applies the Laplace mechanism to produce a differentially
private measurement of qi(D):

mi = qi(D) + Lap
(2T
ϵ

)
Multiplicative weights update rule. Hardt et al. formalize the syn-
thetic approximation A as a distribution over the domain D of records
in the database. For a database D with n records, the algorithm begins
by initializing A to n times the uniform distribution over D. Then, the
multiplicative weights update rule updates the weight A places on each
record x according to:

Anew(x) ∝ A(x) · exp(q(x) · (q(D)− q(A))/2)

Here, q(x) indicates whether the record x contributes to the answer of
q (q(x) is 1 if so, and 0 otherwise). The proportionality sign indicates
that A should be renormalized after scaling.

Representation of A. The standard representation of A—n times a
distribution over D—is not always optimal in practice. For example,
if the query workload Q contains 1-dimensional range queries, then
the representation of A only needs to consider one column of the
database. Hardt et al. give three examples of alternatives: histograms
(1-dimensional), contingency tables (2-dimensional), and data cubes
(n-dimensional).

In the histogram representation, the database can be represented as
a function D : D → R, and the synthetic approximation is a probability
mass function A : D → R. When D is discrete and finite (e.g. ages
from 0 - 100), it is correspondingly easy to represent A. When D is
continuous and infinite, a finite range can be considered and split into
bins. As the dimensionality of D grows, it becomes increasingly difficult
to build compact representations for A.

140 Mechanisms for Linear Queries

When to use MWEM. The MWEM algorithm is a good “default”
choice for large workloads of linear queries. It is comparatively simple
and easy to implement. It is efficient when the representation of A is
small, and it works for arbitrary linear queries. MWEM does not require
the analyst to specify queries in a particular way or require special-
ized transformations on queries or the database. Empirical evaluations
demonstrate its effectiveness for answering query workloads with low
error (Hardt et al., 2012; Hay et al., 2016a).

The MWEM algorithm is also flexible in its application. It can be
used in an offline fashion, when the complete query workload Q is
available ahead of time, to produce accurate answers for those queries.
It can also be used in an online fashion, with a dynamic workload Q, to
answer queries as they arrive by releasing the intermediate measurements
mi (or their approximations). In either mode, the final output of the
algorithm is a synthetic approximation of the original database that
can be used to answer further queries without additional privacy cost.
The approximation will yield accurate answers for queries that are
well-represented by the original workload Q though it may not be useful
for answering poorly-represented queries.

However, MWEM performs poorly in high-dimensional settings, as
A can grow exponentially in the number of dimensions. In addition,
MWEM often requires extensive tuning of hyperparameters (e.g. the
number of iterations, and the number of queries to run per iteration) in
order to achieve good performance. In general, the other techniques in
this chapter tend to produce output with higher utility than MWEM,
at the cost of greater implementation complexity.

4.2 Matrix Mechanism

The Matrix Mechanism (MM) proposed by Li et al., 2015 is a workload-
aware differentially private algorithm that answers linear counting
queries. Its utility is not dependent on the input data.

Workload and data representation. The matrix mechanism begins
with the observation that the answer to a query workload can be ex-
pressed as a matrix-vector product. Each linear query in the workload

4.2. Matrix Mechanism 141

can be written as a vector, and those vectors can be arranged into
a matrix W. If the database itself (in the histogram format) is writ-
ten as a vector x, then the workload’s answer is simply the product
Wx.

Formally, we consider a database D as a collection of records from
a universe X of k attributes {A1, . . . , Ak} each having an ordered
domain dom(Ai). To express linear queries, the database instance is
first transformed into a data vector of counts x ∈ Nn. The MM is
typically used for one- or two-dimensional datasets. In one dimension,
let’s say Ai, each entry of the data vector x[j] represents the number of
tuples in D that take on the jth value in the ordered domain of Ai. In
the two-dimensional case, for attributes Ai, Aj , x summarizes the count
for each tuple in dom(Ai)× dom(Aj). The workload of linear queries
is represented as a matrix W = {w1, . . . ,wm} based on x. Each linear
query is a length-n row vector w, where w[j] ∈ R. The answer to a
linear query w on x is the dot product wx = w[1]x[1] + · · ·+ w[n]x[n].
Hence, the answer to the workload is Wx.

The strategy matrix. It turns out that the best way answer a query
workload W with differential privacy is often to ask a different set of
queries, and then transform the results into a set of answers for W. The
Matrix Mechanism implements this idea using a strategy matrix A that
represents a strategy for answering the queries in W.

Given a m× n workload W and a query strategy matrix A of size
p× n, we say A supports W if each query in W can be expressed as
a linear combination of queries in A. In other words, there exists a
solution matrix X to the linear system W = WA. This system may
have multiple solutions. The Moore-Penrose pseudoinverse of matrix A
is used to express the answer to W, as WA+y′, where y′ is the noisy
answer to A. The matrix mechanism is summarized as follows.

Given an m×n workload W, a p×n strategy matrix A that supports
W and a differentially private algorithm K(A,x) that answers A with
a given database instance x. The matrix mechanism MK,A outputs the
following vector:

MK,A = WA+K(A,x) (4.1)

142 Mechanisms for Linear Queries

Theorem 4.2. The matrix mechanism MK,A inherits the privacy guar-
antee of K and is unbiased if K is unbiased.

Examples of K are Laplace mechanism, Guassian mechanism, or
DAWA. If K is a data independent algorithm, the error for the matrix
mechanism has an explicit analytical bound:

ErrorK,A(W) = P (K)∥A∥2∥WA+∥2F , (4.2)

where P (K) is a constant determined by K. Hence, the problem is to
find a query strategy A that supports W and minimizes ErrorK,A(W),
given a query workload W and a differentially private algorithm K.

Optimizing the strategy. The utility of the Matrix mechanism depends
on the strategy A, leading to an obvious question: can we determine
the optimal strategy for minimizing error?

Li et al., 2015 shows that error-optimal strategy matrices have equal
L1 column norm, which can be normalized to 1. If we use a strategy
with sensitivity 1, the total error is equal to ∥WA+∥2F . Hence, given a
workload W, the optimization problem is summarized as below.

minA∈Rp×n ∥WA+∥2F
s.t. WA+A = W, ∥A∥1 ≤ 1 (4.3)

However, solving this optimization problem is difficult. Li et al., 2015
formulates this problem as a rank-constrained semidefinite program,
which require O(m4(m4 + n4)) time to converge to the global optimum.
As the dimensions of the data increase, the computation becomes
infeasible in practice. The MM is extended by McKenna et al., 2018 to
the HDMM, a differentially private mechanism for answering a workload
of predicate counting queries for high-dimensional datasets. We present
the details of HDMM in in Section 5.3.

When to use the Matrix Mechanism. The Matrix Mechanism is a
simple and elegant framework, which can be easily implemented. The
two primary challenges come in constructing the explicit representations
of W and x (which can be extremely large for high-dimensional data),
and in determining the best strategy A.

4.3. Data-Aware/Workload-Aware (DAWA) Mechanism 143

For some kinds of query workloads (e.g. cumulative distribution
functions), the optimal strategy A is well-known (Li et al., 2015), and
can simply be hard-coded into the implementation. In this setting, when
the data is only one- or two-dimensional, the Matrix Mechanism is a
good choice as it produces high utility. When the query workload is
more complex or less regular (e.g. when the queries are specified by an
analyst), then the DAWA (§ 4.3) or HDMM (§ 5.3) approaches may
work better.

4.3 Data-Aware/Workload-Aware (DAWA) Mechanism

The Data-Aware/Workload-Aware (DAWA) mechanism proposed by
Li et al., 2015 considers a data and workload dependent mechanism
under differential privacy. Unlike the Matrix Mechanism, DAWA focuses
on answering range queries. Each range query wi is described by an
interval [j1, j2] on x, for 1 ≤ j1 ≤ j2 ≤ n. The evaluation of wi = [j1, j2]
on x is written wi(x) and defined as ∑j2

j=j1
x[j].

The DAWA algorithm consists of three steps: (i) private partitioning;
(ii) private budget count estimation; (iii) uniform expansion. The first
two steps require private interactions with the database. To ensure that
the overall algorithm satisfies ϵ-differential privacy, the privacy budget
is split into ϵ1, ϵ2 such that ϵ1 + ϵ2 = ϵ and these two portions of the
budget are used for the first two steps.

Step 1. Private partitioning: This step takes in a privacy budget
ϵ1 and the data vector x, and outputs B, a partition of x into k buckets,
without counts for the buckets.

Step 2. Private bucket counting estimation: Given the parti-
tion B from the first step, this step spends a privacy budget ϵ2 to learn
noisy estimates of the bucket counts, denoted by s. Rather than using
the Laplace mechanism, a workload-aware method is used.

Step 3. Uniform expansion: Given the noisy estimates for the
k buckets, (B, s), an estimate for the n entries of x is derived based
on uniformity assumption: the count s[i] for each bucket bi is spread
uniformly amongst each position x that is contained in bi. The output
of this step is the noisy data vector x′. As this step is a post-processing
step, it still guarantees the same level of privacy. All the range queries
in the workload W are derivable from the noisy data vector x′.

144 Mechanisms for Linear Queries

Next, we will explain the details of the first two steps.
The first step, private partitioning, would like to search for the

optimal partition that results in the least error in the third step. It
proposes a heuristic cost function for a partition: given a partition of
the domain [1, n] into buckets B = {b1, . . . , bk}, the cost of B is defined
as

pcost(x, B) =
k∑

i=1

∑
j∈bi

∣∣∣x[j]− bi(x)
|bi|

∣∣∣ + k/ϵ2 (4.4)

The first term of the cost function estimates the amount the bucket
deviates from being perfectly uniform and the second term estimates
the noise introduced by the second step with privacy buget ϵ2.

Given the set of all intervals on the domain [1, n], denoted by B,
DAWA first computes the cost bcost(x, b) for all b ∈ B and then adds
noise Z ∼ Lap(2∆1bcost/ϵ1) to each cost. Last, it finds the partition
with the least noisy cost using dynamic programming.

The cost of computing all intervals is O(n2 logn) and can be reduced
to O(n log2 n) by restricting to intervals whose length is a power of two.
The search of the optimal partition requires time linear in n and the
number of buckets.

As this step keeps the noisy counts secret and only publishes the
partition with the least (noisy) cost, a small amount of noise is sufficient
to ensure privacy, similar as the report noisy max algorithm described
in Section 2.5.1. The noise added to the cost per bucket is proportional
to the sensitivity of the bucket cost. By setting ∆1bcost ≤ 2, the private
partition step can be shown ϵ1-differentially private.

The second step, private bucket count estimation, takes in the
partition B = {b1, . . . , bk} from the first step of DAWA, and privately
estimate the bucket counts using the remaining privacy budget ϵ2.
Instead of adding Laplace noise directly to the true bucket counts s,
DAWA uses a workload-aware approach. First, DAWA transforms the
given workload W that is based on the original domain [1, n] to Ŵ
such that the answer to the workload Wx can be estimated by the
product of the transformed workload Ŵ and the bucket counts. Then
it applies the Matrix Mechanism described in Section 4.2 to answer
the transformed workload Ŵ. As DAWA focuses on range queries, it

4.4. Others 145

only searches among hierarchical strategies — a tree of queries over
buckets B to get the strategy that minimizes error for answering Ŵ.
After obtaining the optimal strategy A, DAWA answers this strategy
matrix with the Laplace mechanism using privacy budget ϵ2 and then
uses the answer to the strategy matrix to reconstruct the bucket counts,
which are denoted by s̃.

This step takes O(mk log k + k2) time, where m is the number of
queries in W and k is the number of buckets in B. The privacy guarantee
of this step is the same as the Matrix Mechanism, which guarantees
ϵ2-differential privacy.

By sequential composition, DAWA satisfies differential privacy with
total privacy cost (ϵ1 + ϵ2).

Theorem 4.3. The DAWA mechanism satisfies (ϵ1 + ϵ2, 0)-differential
privacy.

When to use DAWA. The decision about when to use DAWA is easier
to make than in other cases: the algorithm is specifically designed for
range queries on one- or two-dimensional data, and often offers better
utility than other approaches in this specific setting. For other kinds of
queries, or for higher-dimensional data, DAWA is not a suitable choice.

4.4 Others

Many additional algorithms have been proposed for answering workloads
of linear queries with differential privacy. The DPComp study (Hay
et al., 2016b) provides a comprehensive list and comparison of these
approaches.

5
Mechanisms for High-Dimensional Data

The approaches described in Chapter 4 work well for low-dimensional
data, but have scalability or accuracy challenges when used for high-
dimensional data. In this setting, algorithms must carefully address
both scalability and accuracy. This chapter discusses several state-of-
the-art approaches for answering workloads of linear queries in the
high-dimensional setting.

Conceptually, these approaches work by building differentially pri-
vate estimates of marginal distributions over the private data. A marginal
distribution is a probability distribution over a subset of a collection of
random variables (in our setting, this collection is the set of attributes
in the database). The marginal distribution of a subset of k attributes
is often called a k-way marginal.

We begin with a simple approach for estimating marginal distribu-
tions with differential privacy, listed in Algorithm 1. This algorithm
estimates the marginal distribution of a subset of a database’s attributes
by counting the number of occurrences of each tuple in the domain of
the subset, adding noise to each count, and then normalizing the counts
to sum to 1. Algorithm 1 satisfies ϵ-differential privacy by the Laplace
mechanism; the l1 sensitivity of building “count” structure is 1.

146

5.1. DualQuery 147

Algorithm 1: Simple Algorithm for Private Marginals
Input : Dataset D ∈ D = P(X) where X = A1 × · · · × An,

target set of attributes A ⊆ {A1, . . . ,An}.
Output : A private marginal: a probability distribution Prob[t]

over tuples t ∈ XA (X restricted to attributes in A).
for t ∈ XA do

count(t)← |{t′ ∈ D | t and t′ agree on the attributes in A}|
noisyCount(t)← max(0, count(t) + Lap(1

ϵ))
total←

∑
t∈XA

noisyCount(t)
for t ∈ XA do

Prob[t]← noisyCount(t)
total

return Prob

Algorithm 1 produces accurate results when the set of target at-
tributes A is small. As A grows in size, the size of XA also grows, and the
number of tuples in each “bin” of “count” shrinks. When these counts
are small enough, the noise added for differential privacy overwhelms
the count.

This tradeoff is challenging for high-dimensional data. When the
set of attributes is large, we cannot simply set A to be the complete
set—the resulting marginal distribution would be extremely noisy. For
a dataset with n attributes, we could use Algorithm 1 to compute
n accurate 1-way marginals for a total privacy cost of n · ϵ, but this
approach would not capture correlations between attributes.

One of the major challenges in the high-dimensional setting is thus
to determine correlations between attributes and determine how to
estimate a probability distribution over the entire dataset using lower-
dimensional marginals. Each of the approaches in this chapter takes a
different approach to solving this problem.

5.1 DualQuery

The DualQuery algorithm (Gaboardi et al., 2014) has the same goal as
MWEM—it is an iterative, workload-aware, data-dependent algorithm
for constructing a synthetic approximation of a private dataset. The

148 Mechanisms for High-Dimensional Data

Inputs: query workload Q, private data D, number of iterations T ,
privacy parameter ϵ
Output: synthetic database of T records

1 : Sample s queries q1, . . . , qs from Q Pick s queries randomly
2 : x1 ← arg maxx

1
s

∑s
j=1 qj(x) Generate an initial record

3 : for i← 2, . . . , T do : Run T iterations...
4 : ui(D, q) = ∑i−1

j=1 q(D)− q(xj) Define the score function
5 : for j ← 1, . . . , s do : Sample s queries...
6 : qj ← ExpMech(D,ui, Q, ϵ) Select a “bad” query
7 : xi ← arg maxx

1
s

∑s
j=1 qj(x) Generate a new record

8 : Return ⋃T
i=1 xi Release the synthetic records

Figure 5.1: The DualQuery Algorithm (Simplified)

algorithm’s name comes from the fact that the algorithm is conceptually
the dual of MWEM. Instead of maintaining and improving a distribution
over data elements, DualQuery maintains a distribution over queries
(which can be represented compactly) and uses an external solver to
generate a single concrete data record at each iteration.

Since the universe of data records can be extremely large, especially
for high-dimensional data, maintaining a distribution over data records
is costly. This is the limiting factor for scalability in algorithms like
MWEM. Since DualQuery does not maintain such a representation,
it is capable of scaling to high-dimensional data. In DualQuery,
the computationally challenging step—generating a new data record—
can be done without access to the private data, and can therefore be
outsourced to a standard constraint solver (e.g. CPLEX).

A simplified version of the DualQuery algorithm appears in Fig-
ure 5.1. Our simplifications are designed to expose the important con-
cepts behind the algorithm; see Gaboardi et al., 2014 for the full version.
The private data is provided to the algorithm as a database D ∈ D. In
our simplified version, each query q in the query workload Q returns
a single number (i.e. q : D → R). The algorithm returns a set of T
synthetic records (x1, . . . , xT) ∈ D.

5.1. DualQuery 149

The algorithm builds a list of synthetic data records x1, . . . , xT

representing the synthetic database. It begins with an initialization
step: the algorithm randomly picks s queries from the workload Q (line
1), and generates (using CPLEX) the first record x1 by maximizing
the value of the selected queries on x1 (line 2). At each iteration, the
algorithm uses the exponential mechanism to sample s queries from
the workload Q (lines 5-6). The score function used in the exponential
mechanism (line 4) assigns a high score for queries whose outputs are too
low on the synthetic records x1, ..., xi−1 (compared with the private data
D); the goal is then to generate new synthetic records to increase those
outputs. To accomplish this, the algorithm generates (using CPLEX)
a new data record xi that maximizes the value of the selected queries.
After all T iterations have finished, the algorithm outputs the union
of all T generated records. Note that the algorithm has no method for
decreasing the output value of any query—so our simplified variant will
only work well if we start from an empty set of synthetic records and
use queries with non-negative outputs on the true private data.

The full version of the algorithm (see Gaboardi et al., 2014) includes
an update rate η and target accuracy metrics α and β. The optimiza-
tion steps in lines 2 and 7 are relaxed to allow the solver to return
“good enough” data records for achieving the desired accuracy, which
improves solving time. The full algorithm also replaces the explicit use
of the exponential mechanism with a sampling step from an equivalent
distribution over queries.

Privacy. The only use of the private data D is via the exponential
mechanism (line 6); the computationally challenging steps (generating
new data records in lines 2 and 7) do not involve the private data,
so they can be easily outsourced to an external solver. The algorithm
involves s(T − 1) uses of the exponential mechanism, for a total privacy
cost (by sequential composition) of sϵ(T − 1). The sensitivity of the
score function ui is complicated slightly by the fact that it performs a
summation; for iteration i, if each query q ∈ Q is 1-sensitive, the score
function has sensitivity ∆ui = i − 1. Note that the sensitivity of the
score function increases with the iteration number.

150 Mechanisms for High-Dimensional Data

Theorem 5.1. The DualQuery algorithm satisfies (ϵ, 0)-differential
privacy.

Properties. As mentioned earlier, the algorithm does not maintain
a distribution over the universe of data records, so its scalability is
limited only by the solver’s ability to generate new data records. In
an empirical evaluation, Gaboardi et al. demonstrate the use of Du-
alQuery to generate synthetic approximations for datasets of up to
17,770 dimensions.

Unlike MWEM, DualQuery is not useful in an online setting, be-
cause it does not compute accurate measurements for queries of interest
during its execution. Accurate answers for queries in the workload can
only be obtained after all iterations have been completed.

Finally, DualQuery tends to produce less accurate answers than
MWEM, when MWEM is applicable (see Gaboardi et al., 2014). The
strength of DualQuery is its ability to handle higher-dimensional
data, rather than the accuracy of its results.

5.2 PrivBayes

PrivBayes, proposed by Zhang et al., 2014, is a differentially private
algorithm that publishes high-dimensional data. This algorithm aims
to approximate the set of high-dimensional distribution from a set of
carefully chosen set of data-dependent low-dimensional marginals. To
achieve this goal, PrivBayes considers the following structure for a
database with attribute set A = {A1, . . . , Ad}.

A Bayesian network N on A is a directed acyclic graph (DAG) over
these attributes and models conditional independence among attributes
using directed edges. This network N is defined as a set of d attribute-
parent pairs, (X1,Π1), . . . , (Xd,Πd), such that (i) each Xi is a unique
attribute in A; (ii) the parent set of Xi in N , Πi, is a subset of the
attributes in A\{Xi}; (iii) for any 1 ≤ i ≤ j ≤ d, we have Xj /∈ Πi, i.e.,
there is no edge from Xj to Xi in N — this ensures that the network is
acyclic. The degree of N is defined as the maximum size of any parent
set Πi in N .

5.2. PrivBayes 151

Let Pr[A] denote the full distribution of tuples in database D. This
joint probability can be approximated with d conditional distributions
based on the attribute-parent pairs in N , i.e.,

Pr[A] = Pr[X1, . . . , Xk] =
d∏

i=1
Pr[Xi|Πi] (5.1)

A good approximation of Pr[A] requires that (i) N accurately cap-
tures the conditional independence among the attributes in A; (ii)
the d conditional distributions are accurately learned from the data.
If N has a small degree, then the learning of the conditional dis-
tributions is simply learning of d low-dimensional joint distributions
(Pr[X1,Π1], . . . ,Pr[Xd,Πd]).

Based on this idea, PrivBayes consists of the following three steps.
Step 1. Network learning: This step takes in a privacy budget ϵ/2

and the private data to construct a k-degree Bayesian network N over
attributes in D (k is a small value that can be chosen automatically by
PrivBayes). PrivBayes takes a greedy approach to add attribute-parent
pairs into the network. First, it randomly picks an attribute X1 from
A and adds (X1, ∅) to an empty network N . Next, among all possible
attribute-parent sets (X,Π) where X is from the remaining attributes
and Π is a subset of the attributes that have been added to the current
N , PrivBayes applies exponential mechanism to pick the “best” pair
and add it to N . This process repeats until all attributes in A have an
attribute-parent pair in N .

The first-cut exponential mechanism for picking the best attribute-
parent pair considers a popular score function in a non-private setting,
the mutual information between attributes I(X,Π), but this score
function is highly sensitive and allows the exponential mechanism to
output a poor choice of attribute-parent pair. Hence, PrivBayes define
a new notion maximum joint distribution for an attribute-parent pair
(X,Π) as the joint distribution that maximizes the mutual information
between X and Π, denoted by Pr⋄[X,Π]. This new function has a small
sensitivity 1

n and it is also a good replacement of I(X,Π) — if Pr⋄[X,Π]
is large, then I(X,Π) tends to be large. The computation time for
this new function is O(n2k), but in practice, PrivBayes only considers
low-degree Bayesian networks, so the algorithm is still practical.

152 Mechanisms for High-Dimensional Data

Step 2. Distribution learning: The remaining privacy budget
ϵ/2 is spent to compute the necessary differentially private distributions
of the data in the subspaces of the Bayesian network. Let the maximum
degree of the network N be k. This step first materializes the joint dis-
tribution Pr[Xi,Πi] for i ∈ [k+ 1, d] and then perturbs them by Laplace
noise with scale 4(d − k)/(nϵ). Based on the noisy joint distribution
Pr∗[Xi|Πi], we can obtain all the conditional distributions Pr[Xi|Πi]
for all i = 1, . . . , d. This step satisfies (ϵ/2, 0)-differential privacy.

Step 3. Data synthesis: We can approximate the distribution of
the tuples inD using the noisy distributions, i.e., Pr∗[A] = ∏k

i Pr∗[Xi|Πi]
and then sample tuples from Pr∗[A]. However, this is very costly. In-
stead, PrivBayes perform sampling without materializing Pr∗[A], but
sample the attributes of each tuple in an increasing order or i, such
that we will be able to sample Xj from Pr∗[Xj |Πj] given the previous
sampled attributes. In this way, a synthetic database D∗ with the same
size as D is generated.

Privacy. Step 1 and Step 2 spent half of the privacy budget each and
by sequential composition, they achieve (ϵ, 0)-differential privacy. Step 3
is simply a post-processing step that uses the private network structure
and the joint distribution to sample records.

Theorem 5.2. The PrivBayes algorithm satisfies (ϵ, 0)-differential pri-
vacy.

Properties. The paper shows a utility guarantee for the noisy distri-
butions learned in step 1 – the ratio of average scale of information to
average scale of noise is no less than n·ϵ

(d−k)·2k+3 . In addition, the paper
evaluated the PrivBayes algoirthm on two types of tasks: (i) build all
α-way marginals of a dataset; and (ii) simultaneously train multiple
SVM classifiers on a dataset, where each classifier predicts one attribute
in the data based on all other attributes.

5.3. HDMM 153

5.3 HDMM

The high-dimensional matrix mechanism (HDMM) proposed by Mc-
Kenna et al., 2018 extends the basic Matrix Mechanism by Li et al.,
2015 (Section 4.2) for answering a workload of predicate counting
queries for high-dimensional datasets. This approach exploits a compact
representation to efficiently search (a subset of) the space of differentially
private algorithms for one that answers the input query workload with
high accuracy. HDMM first represents the query workloads W using
an implicit matrix representation W. Then it selects the optimized
strategy A using this implicit representation W. Next, it applies Laplace
mechanism to get noisy answer y for this strategy A and infers answers
to the implicitly vectorized data x′ from (A,y). Last, the HDMM returns
the answer Wx′. This algorithm satisfies the same privacy guarantee
as the Laplace mechanism. Readers can refer to Section 4.2 for the
details of the Matrix Mechanism. In this section, we will focus on (i)
the compact representation of the workload and the data, and (ii) the
accuracy optimization based on the compact representation.

Implicit Representations. In the Matrix Mechanism, a data vector
x represents the count for each tuple in the full domain dom(A1) ×
· · · dom(Ak). A predicate counting query ϕ on x is represented by a
length-n vector w, where each entry equal to ϕ(t) ∈ {0, 1} for each tuple
t ∈ dom(A1)×· · ·×dom(Ak). Given a predicate [ϕ]A1 defined on a single
attribute A1, where ∥dom(A1)| = n1, we can vectorize this predicate
with respect to just the domain of A1 instead of the full domain of all
attributes. For a predicate that is formed from the conjunction of such
single attribute predicates, its vectorized form has a concise implicit
representation in terms of the kronecker product, denoted by ⊗, between
vectors. A length n vector is treated as an 1× n matrix.

Definition 5.1 (Kronecker Product). For two matrices A ∈ Rm×n and
B ∈ Rm′×n′ , their Kronecker product A⊗B ∈ Rm·m′×n·n′ is:

A⊗B =

a11B · · ·a1nB

...
am1B· · ·amnB

154 Mechanisms for High-Dimensional Data

Theorem 5.3 (Implicit Vectorization). Let ϕ = [ϕ1]A1 ∧ [ϕ2]A2 be a
predicate defined by the condjuction of ϕ1 and ϕ2 on attributes A1 and
A2. Then, vec(ϕ) = vec(ϕ1)⊗ vec(ϕ2).

The explicit representation of vec(ϕ) has size n1 ·n2, but the implicit
representation, vec(ϕ1) ⊗ vec(ϕ2) requires storing only vec(ϕ1) and
vec(ϕ2) of size n1 + n2. This representation can be generalized to a set
of predicates.

Theorem 5.4. Given predicate sets Φ = [ϕ1, . . . , ϕp]A1 and Ψ = [ψ1, . . . ,

ψr]A2 , on attributes A1 and A2, the vectorized product is defined in
terms of matrices vec(Φ) and vec(Ψ): vec(Φ×Ψ) = vec(Φ)⊗ vec(Ψ).

Given a set of predicate counting queries on the full domain W =
{q1, . . . , qk} and weights w1, . . . , wk, HDMM proposes a way to convert
them into an implicit representation workload matrix. For each qi ∈W,
where qi = [Φi1]A1 × · · · × [Φid]Ad

, its implict representation is

Wi = vec(Φi1)⊗ · · · ⊗ vec(Φid).

Hence, the implicit workload is represented as

W[k] =

w1W1

...
wkWk

 =

w1(vec(Φ11)⊗ · · · ⊗ vec(Φ1d))

...
wk(vec(Φk1)⊗ · · · ⊗ vec(Φkd))

 (5.2)

Besides saving the storage cost, this implicit representation of the
workload accelerates the key steps of the Matrix Mechanism. First,
the matrix product can be computed using the implicit representation.
Given a matrix with its implicit representation W = W1 ⊗ · · ·Wd, we
have WTW = WT

1 W⊗ · · ·WT
d W. Second, a critical step is to compute

the pseudoinverse of the strategy matrix A on the full domain. Given the
implicit representation of A as A = A1⊗· · ·⊗Ad, its pseudoinverse can
be implicitly represented as A+ = A+

1 ⊗· · ·⊗A+
d . Lastly, the sensitivity

of the strategy matrix can be calculated as ∥A∥1 = ∏d
i=1 ∥Ai∥1.

Optimization. Recall that the goal of the Matrix Mechanism in Sec-
tion 4.2 is to find a strategy A that (a) supports the input workload W
while (b) offering minimum expected total squared error (Equation 4.3).

5.4. PGM 155

HDMM limits the search space of the strategy matrix to a small class
of strategies, p-identity matrix:

A(Θ) =
[

I
Θ

]
D (5.3)

where I is the identity matrix and D = diag(1N + 1pΘ)−1. D is a
diagnoal matrix that scales the columns of A(Θ) so that ∥A∥ = 1. The
p × n values in Θ determines the weights of the p queries as well as
the weights on the identity queries (where a lower weight query will
be answered with greater noise). The optimization problem becomes
parameterized in terms of Θ:

min
A∈A(Θ)|Θ∈Rp×n

+

∥WA+∥2F . (5.4)

This optimization problem does not guarantee the optimal strategy
matrix, but it reduces the number of variables and allow more effective
gradient-based optimization. Given strategy A, the objective function,
denoted by C(A), and the gradient function, denoted by ∂C

∂A , are defined
as

C(A) = ∥WA+∥2F = tr[(A+A)(W+W)] (5.5)

∂C

∂A = −2A(AT A)+(WT W)AT A+ (5.6)

Given any p-Identity strategy A(Θ), both the obejctive function and
the gradient can be evaluated in O(pn2) time. Despite the performance
improvement over MM, this parametized optimization is only feasible
for special workloads and low-dimensional data.

To address high-dimensional data, a series of optimization is used
in HDMM based on the implicit representation of the workloads. The
key idea is to decompose a strategy optimization problem on a multi-
dimensional workload into a sequence of optimization problems on
individual attributes.

5.4 PGM

Probabilistic graphical-model (PGM) based estimation and inference is
applied by McKenna et al., 2019 to improve the accuracy and scalability

156 Mechanisms for High-Dimensional Data

of many state-of-the-art mechanisms. Differing from all the differential
private mechanisms introduced earlier, PGM is a post-processing step,
and hence costs no additional privacy budget. It can be applied as a
pluggable subroutine that could be used within the three prior techniques
(DualQuery, PrivBayes, and HDMM).

Let y be a set of answers for workload queries W outputted by an
ϵ-differentially private mechanism (e.g. DualQuery, PrivBayes, HDMM).
The goal of PGM is to derive answers to a possibly different workload
queries W′, given y. Prior work first estimate a full contingency ta-
ble p̂ from the given measurements y that minimizes a loss function
L(p) = ∥Wp̂−y∥ and then infer the new query answers W ′p̂. However,
this approach does not scale to high dimensions since the size of the
full contingency table is exponential in the dimensions while the first
workload queries W are often over low-dimensional queries.

Instead of estimating the full contingency table, PGM considers
a graphical model pθ(x) = 1

z exp(∑
C∈C θC(xC)) over marginals xC

to model the data distribution of the input data x. Given the set of
marginals associated to y, PGM searches for the best parameter vector
θ such that the graphical model pθ(x) has maximum entropy among
all p̂ with these marginals. In this way, the structure of the graphical
model is determined by y, such that no information is lost compared
to a full contingency table representation. Moreover, its representation
is much more compact when expressing the measurements in y over a
low-dimensional marginal. After p̂θ has been estimated, PGM uses it to
infer answers to new queries without materializing the full contingency
table representation.

Readers can refer to the paper (McKenna et al., 2019) for the details.
It is shown that incorporating PGM estimation significantly reduces
the error. For example, for PrivBayes, workload errors can be improved
up by 7x and for DualQuery, an error reductions up to 4.4x. Moreover,
incorporating PGM estimation into MWEM and HDMM enables these
algorithms to be feasible on the larger datasets and query workloads.

6
Mechanisms for Highly Sensitive Queries

The techniques described so far have all leveraged global sensitivity
(defined in Definitions 6.1 and 2.3), which considers all possible pairs
of neighboring databases. For some queries, global sensitivity is un-
bounded, because the maximum difference in the query’s output on two
neighboring databases depends on the data.

A

B

C

D

Figure 6.1: A graph that induces
unbounded global sensitivity for
triangle-counting.

One common example is counting tri-
angles in a graph. An example of such
a graph is shown in Figure 6.1; it con-
tains two triangles (ABC and BCD). We
might describe this graph in a database
using one row per edge; in this setting,
neighboring databases represent graphs
differing in exactly one edge.

Consider what happens if we remove
the edge BC—the resulting graph has no
triangles. This is a neighboring database
to the one in Figure 6.1—we have re-
moved a single edge from the graph—but the query’s output changed
by 2. If three triangles contained the edge BC, then the output would
change by 3.

157

158 Mechanisms for Highly Sensitive Queries

It turns out that for any bound we might posit on the global
sensitivity of the triangle-counting query, it is possible to construct a
graph that violates the bound. The global sensitivity of the triangle-
counting query is unbounded.

A triangle-counting query can be considered as a self-join query on
a table of edges. In general, queries involving join operators encounter
unbounded global sensitivity. Even simple aggregates like the median of
an attribute can have a high sensitivity. Adding or removing a record
can change the median from the smallest possible value in the domain
to the largest possible value. Hence, it is important to design algorithms
for highly sensitive queries.

There are two common approaches for handling queries like these
under differential privacy: local sensitivity, described next and used in
three of the four techniques described in this chapter, and truncation
or Lipschitz extension, described in Section 6.5.

6.1 Local Sensitivity

Local sensitivity (Nissim et al., 2007) is similar to global sensitivity,
except that it considers only neighbors of the true database being
considered (instead of considering all pairs of neighbors).

Definition 6.1 (l1 local sensitivity). The l1 local sensitivity of a function
f : D → Rk on database instance x is

LS1(f, x) = max
(x,D2)∈Nd(D)

∥f(x)− f(D2)∥1.

Note that x is the actual database being used to run the query f ,
and the max quantifies only over D2. The l2 local sensitivity is obtained
by replacing the l1-norm in the definition by the l2-norm.

The local sensitivity of the triangle-counting query mentioned earlier
is bounded, because it considers only neighbors of the actual graph we
are querying. For the example graph in Figure 6.1, the local sensitivity
of the triangle-counting query is 2—by adding or removing an edge in
that graph, we can change the query’s output by at most 2 triangles.

6.2. Propose-Test-Release 159

Unlike global sensitivity, local sensitivity depends on the database (in
addition to the query). As a result, local sensitivity is itself sensitive—
it might reveal information about the data. Nissim et al. provide a
compelling example using a median query, in which local sensitivity
can reveal the median itself. Because of this challenge, approaches
have been developed that allow the use of local sensitivity without
leaking information about the data; we discuss three of them in the
next sections.

6.2 Propose-Test-Release

The Propose-Test-Release (PTR) framework (Dwork and Lei, 2009)
allows releasing results with Laplace noise calibrated to local sensitivity
with (ϵ, δ)-differential privacy. The framework has three steps:

1. The analyst proposes a sensitivity b.

2. The framework performs a differentially private test to check that
the true database is “far” from one with local sensitivity higher
than b.

3. If the test passes, the results of the query are released with Laplace
noise scaled to b

ϵ .

Clearly, b does not reveal anything about the data, because the analyst
has proposed it. The check that the true database is far from one with
local sensitivity higher than b is itself differentially private, so the
information leakage from the test can be bounded. The PTR approach
thus sidesteps the problem of local sensitivity leaking information by
applying differential privacy.

PTR satisfies (ϵ, δ)-differential privacy (instead of pure ϵ-differential
privacy) because there is a chance the test in step (2) passes “by
accident.” The test is itself randomized (to satisfy differential privacy),
and the noise in the test can cause it to pass even though b is not a
“good” proposal. In this case, the noise added in step (3) is not actually
sufficient to satisfy ϵ-differential privacy. The δ parameter for PTR
quantifies the chances that the test passes “by accident.”

160 Mechanisms for Highly Sensitive Queries

To define PTR formally, we need a way to measure how “far” a
database is from one with high local sensitivity. We adopt the following
definition (Nissim et al., 2007) of the local sensitivity at distance k,
which measures the following: imagine you add or remove k records
in the database x, in a worst-case manner that maximizes the local
sensitivity of the new database you construct (we say that the new
database is “at distance k from x”). Then measure the local sensitivity
of that new database.

Definition 6.2 (Local Sensitivity at Distance). (Nissim et al., 2007, Def-
inition 3.1). The local sensitivity of f at distance k from database x
is:

A
(k)
f (x) = max

d(x,y)≤k
LS1(f, y)

Theorem 6.1 (Propose-test-release). (adapted from Dwork and Lei,
2009). The following mechanism satisfies (ϵ, δ)-differential privacy:

1. Propose: Propose a target bound b on local sensitivity.

2. Test: Let d = arg mink(A(k)
f (x) > b).

If d+ Lap(1
ϵ) ≤ log(2/δ)

ϵ , return ⊥.

3. Release: Return f(x) + Lap(b
ϵ).

The key to the privacy of PTR is that the distance d has a global
sensitivity of 1, so adding Laplace noise to d with the scale 1

ϵ satisfies
ϵ-differential privacy. The right-hand side of the test is defined so that
the test succeeds by accident with probability at most δ (by the fact
that if Y ∼ Lap(b), then Pr[|Y | ≥ t · b] = exp(−t)).

When to use Propose-Test-Release. PTR is relatively easy to apply,
and conceptually easy to understand. The major challenge is typically
calculating A(k)

f —doing so directly would seem to require calculating
local sensitivity for all possible databases at distance k. For this reason,
most applications of PTR use an efficiently-computed upper bound on
A

(k)
f that is domain-specific (i.e. works only for a specific class of queries

f). We will see some examples in Chapter 7.

6.3. Smooth Sensitivity 161

6.3 Smooth Sensitivity

An alternative approach for safely leveraging local sensitivity is smooth
sensitivity (Nissim et al., 2007). Smooth sensitivity works by ensuring
that the sensitivity is “smooth enough” that the noise used to achieve
privacy also prevents information leakage from the sensitivity itself.
To accomplish this, Nissim et al. use the concept of β-smoothness to
quantify how smooth the sensitivity is.

Definition 6.3 (β-smoothness (Nissim et al., 2007)). A function f is
β-smooth if for all neighboring databases x and y:

f(x) ≤ eβf(y)

To apply smooth sensitivity, we will need to show that the measure
of sensitivity we want to use is β-smooth, and that it is an upper bound
on local sensitivity.

Definition 6.4 (Smooth bound on local sensitivity (Nissim et al., 2007,
Definition 2.1)). For β > 0, a function S : X n → R is a β-smooth upper
bound on the local sensitivity of f if:

• S(x) is an upper bound on LS1(f, x): ∀x ∈ X n. S(x) ≥ LS1(f, x)

• S(x) is β-smooth: ∀x, y ∈ X n, d(x, y) = 1. S(x) ≤ eβ · S(y)

One way to achieve this definition is to force the function to be β-smooth,
by explicitly examining the local sensitivity of nearby databases. If we
find one with very high local sensitivity, then our smooth upper bound
should use that local sensitivity instead, “discounted” according to
the distance between the true database and the one with high local
sensitivity.

Definition 6.5 (Smooth sensitivity (Nissim et al., 2007, Definition 2.2)).
For β > 0, the β-smooth local sensitivity of f is:

S∗
f,β(x) = max

y∈X n

(
LS1(f, y) · e−βd(x,y)

)

162 Mechanisms for Highly Sensitive Queries

In practice, the value S∗
f,β(x) is virtually impossible to calculate

directly, because it requires considering the local sensitivity of all
databases (no matter how far they are from the true database). Instead,
practical applications of smooth sensitivity typically use a function-
specific β-smooth upper bound on local sensitivity that can be efficiently
calculated. Nissim et al. give examples for the median, minimum, cost
of a minimum spanning tree, and triangle-counting functions.

Calibrating noise to smooth sensitivity. Achieving differential privacy
using a β-smooth upper bound on local sensitivity requires scaling
noise in a slightly different way than we saw earlier for global sensitivity.
Nissim et al. present a framework of (α, β)-admissible noise distributions
to specify these requirements. Here, we describe several useful examples—
for noise drawn from the Cauchy, Laplace, and Gaussian distributions.

Lemma 6.2 (Cauchy distribution (Nissim et al., 2007, Lemma 2.7)). For
γ > 0, if S(x) is a β-smooth upper bound on the local sensitivity of f
for β = ϵ

2d(γ+1) and Z is sampled from the generalized (d-dimensional)
Cauchy distribution with density h(z) ∝ 1

1+|z|γ , then the following
mechanism satisfies (ϵ, 0)-differential privacy:

M(x) = f(x) + 2(γ + 1) · S(x)
ϵ

· Z

Lemma 6.3 (Laplace distribution (Nissim et al., 2007, Lemma 2.9)).
If S(x) is a β-smooth upper bound on the local sensitivity of f for
β = ϵ

4(d+ln(2/δ)) and Z is sampled from the d-dimensional Laplace
distribution, then the following mechanism satisfies (ϵ, δ)-differential
privacy:

M(x) = f(x) + 2S(x)
ϵ
· Z

Lemma 6.4 (Gaussian distribution (Nissim et al., 2007, Lemma 2.10)).
If S(x) is a β-smooth upper bound on the l2 local sensitivity of f for
β = ϵ

4(d+ln(2/δ)) and Z is sampled from the d-dimensional Gaussian
distribution, then the following mechanism satisfies (ϵ, δ)-differential
privacy:

M(x) = f(x) + 5
√

2 ln(2/δ) · S(x)
ϵ

· Z

6.4. Sample & Aggregate 163

When to use Smooth Sensitivity. Because it is challenging to apply,
smooth sensitivity is not as commonly used as global sensitivity-based
approaches. As mentioned earlier, efficiently bounding smooth sensitivity
can be extremely challenging. Smooth sensitivity also requires extra
noise compared to global sensitivity—the definitions above all have a
constant factor of at least 2—so using smooth sensitivity usually does
not make sense when it is possible to bound global sensitivity.

In addition, the definition of smooth sensitivity is tied to a specific
definition of neighboring databases—the one associated with bounded
differential privacy (see Section 2). Smooth sensitivity, as originally
defined, cannot be used to achieve unbounded differential privacy.

However, smooth sensitivity can be extremely useful when there is no
way to bound global sensitivity directly. In these cases, all approaches
for achieving differential privacy require making tradeoffs, and the
requirements of smooth sensitivity may be more reasonable than the
alternatives. We will see an example of its use in practice in Chapter 7.

6.4 Sample & Aggregate

The Sample & Aggregate framework (Nissim et al., 2007) is another way
to take advantage of local sensitivity, and does not require computing
local sensitivity directly. For a query function f : D → A and a differ-
entially private aggregation function M : P(A) → Rd, the Sample &
Aggregate framework takes the following steps:

1. Sample: Split the database D into k disjoint chunks D1, . . . , Dk.

2. Run f : Calculate the query’s answer on each chunk: ai = f(Di)
for i ∈ 1, . . . , k.

3. Aggregate: Release the result of running the aggregation mecha-
nism M on the answers: M(a1, . . . , ak).

Note that since the chunks D1, . . . , Dk constructed in step (1) are
disjoint, each record in D will appear in exactly one chunk. This means
that each record influences exactly one answer ai—so adding or removing
a record in the input database will cause at most one of the ais to change.

164 Mechanisms for Highly Sensitive Queries

Instantiating M. One common way to instantiate the aggregation
function M is with a differentially private mean. If the expected range
of outputs of f is known ahead of time, we can use the a clipped mean
mechanism, which satisfies ϵ-differential privacy:

1. Clip answers: Let a′
i = max(lowerBound,min(upperBound, ai)).

2. Noisy sum: Let s =
(∑k

i=1 a
′
i

)
+ Lap

(
upperBound−lowerBound

ϵ

)
.

3. Noisy mean: Release s
k .

In many cases, it is difficult to bound the output range of f tightly.
In these cases, an adaptive algorithm can be used to find the mean
(e.g. Smith, 2011). However, such algorithms are often slower and less
accurate than the simple clipped mean.

When to use Sample & Aggregate. The primary benefit of Sample &
Aggregate is that no bound on the sensitivity of the query f is required—
it works for any f , no matter how sensitive. In particular, Sample &
Aggregate can work well when f ’s sensitivity depends on the data—
especially when f ’s worst-case sensitivity is high, but its average-case
sensitivity is low (for example, when calculating the median). Sample
& Aggregate can take advantage of low average-case sensitivity in these
cases.

The challenge in applying Sample & Aggregate lies in dealing with
the potentially uncertain output range of f . In effect, the framework
shifts the burden from proving a bound on the sensitivity of f , to
estimating the range of f ’s output.

If f ’s output definitely lies in a certain range (e.g. a machine learning
classifier with a finite set of output classes), then the clipped mean
can be easily applied. However, many important queries do not have
this property, and instead have data-dependent output ranges (e.g. the
median). In these cases, Sample & Aggregate can be effectively applied
if the analyst already knows something about the range of the data
(e.g. upper and lower bounds), but it can be very challenging to apply
otherwise.

6.5. Lipschitz Extensions 165

The privacy of Sample & Aggregate is easy to see: we argue above
that exactly one of the ai’s differs between two neighboring databases,
regardless of f ’s sensitivity, so if M satisfies ϵ-differential privacy, then
the whole framework does too. It is not so easy to prove general accuracy
bounds for this framework, since accuracy depends heavily on the data.

6.5 Lipschitz Extensions

When the global sensitivity of a query is unbounded, it is sometimes
possible to modify the query to force it to have bounded global sensitivity.
One way of formalizing these transformations is via Lipschitz extensions
(Kasiviswanathan et al., 2013; Blocki et al., 2013; Raskhodnikova and
Smith, 2015).

Definition 6.6 (Lipschitz constant (Raskhodnikova and Smith, 2015)).
Let f : X → Y be a function from a domain X to a range Y with
associated distance measures dX and dY . Function f has Lipschitz
constant c (equivalently, is c-Lipschitz) if dY (f(x), f(x′)) ≤ c · dX(x, x′)
for all x, x′ ∈ X.

The notion of a Lipschitz constant can be seen as a generalization
of global sensitivity to arbitrary distances. If a function f is c-Lipschitz,
then its global sensitivity is bounded by c.

Definition 6.7 (Lipschitz extension (Raskhodnikova and Smith, 2015)).
Consider a domain X and a range Y with associated distance measures
dX and dY , and let X ′ ⊂ X. Fix constants c > 0 and s ≥ 1. Given a
c-Lipschitz function f ′ : X ′ → Y , a function f : X → Y is a Lipschitz
extension of f ′ from X ′ to X with stretch s if

• f is an extension of f ′, that is, f(x) = f ′(x) on all x ∈ X ′ and

• f is s · c-Lipschitz.

If s = 1, then we call f a Lipschitz extension of f ′ from X ′ to X

(omitting the stretch).

In the context of differential privacy, the idea of a Lipschitz extension
is to find a subset of all databases (X ′) such that the desired query

166 Mechanisms for Highly Sensitive Queries

(f ′) has low global sensitivity on the “good” subset, then construct
a transformed query (f) that gives the same output on the “good”
databases while maintaining low global sensitivity over all databases.

Applying the Lipschitz extension. The function f in Definition 6.7 has
bounded global sensitivity, due to the definition of c-Lipschitz. Hence,
if we know a way to transform a function f ′ into a c-Lipschitz extension
f , then we can achieve differential privacy for f ′ by running f instead
and adding noise scaled to its global sensitivity.

The challenge of applying the Lipschitz extension idea comes in
transforming f ′ into f . A common strategy is clipping—we construct f
from f ′ as follows:

f(x) = f ′(clip(x))

Here, the clip function transforms a value x ∈ X to a value clip(x) ∈ X ′

(i.e. clip has the type X → X ′). The key observation is that many
functions f ′ are already c-Lipschitz, if the right clipping function is
chosen. For example, if f ′ is the triangle-counting query described at
the beginning of this Chapter, then we can use a clip function which
ensures the degree of each node in the graph is bounded by a constant
c (e.g. by throwing out edges beyond this bound). With this definition
of clip, the construction above is indeed a Lipschitz extension of the
triangle counting query; it has global sensitivity bounded by c, and we
can achieve differential privacy for f in the usual way (e.g. by adding
Laplace noise scaled to c

ϵ).

When to use Lipschitz extensions. The idea of Lipschitz extensions
(and associated ideas of clipping) are used in many other mechanism
definitions, including some that we will discuss in Chapter 7. Lipschitz
extensions are typically used in this way: as a building block in con-
structing larger mechanisms that serve a specific purpose. In particular,
the construction of the Lipschitz extension depends heavily on the
application, and no single approach for this construction works well in
all cases.

The primary advantage of this approach is the ability to leverage
global sensitivity rather than local sensitivity. The use of global sensitiv-

6.5. Lipschitz Extensions 167

ity simplifies the privacy analysis of the larger mechanism and usually
results in less total noise.

The main challenge in constructing a good Lipschitz extension comes
in minimizing the amount of information thrown away by the extension.
Our example construction above actually discards information in the
underlying data—in that case, by throwing out edges beyond a bound.
In our example, setting c small may reduce the function’s sensitivity, but
it also results in potentially more information thrown away. Achieving
good accuracy using this approach therefore requires a careful balancing
of the scale of the noise against the quantity of information retained by
the extension. This balancing act is especially tricky because the optimal
setting often depends on the data. If this tradeoff can be successfully
navigated, then approaches based on Lipschitz extensions can often add
less noise than the other techniques described in this chapter and thus
produce more accurate results.

7
Mechanisms for Multi-Relational Databases

The mechanisms we have seen so far are limited to databases of a single
table. This chapter discusses approaches for answering queries over
multi-relational databases—databases that include multiple tables. This
setting is particularly challenging for two main reasons.

First, defining neighboring databases and hence privacy for multiple
tables depends on the constraints between the tables. A naive approach is
to join the multiple tables into a single table and apply differentially pri-
vate mechanisms for a single table. This approach does not only increase
the storage cost and the query processing time in many cases, but also
fails to provide sufficient privacy protection for some private tables. For
example, consider the database of Figure 7.1 with schema Person(pid,
age, hid) and Household(hid, st, type). Person.pid is a foreign
key to Household. The single table representation of this database only
supports neighboring databases that differ in a row of a person, not a
row of a household. Hence, a differentially private mechanism for the
Person-Household table does not provide bounded privacy guarantee
for the household.

Second, multi-relational queries containing relational joins have
unbounded global sensitivity. Consider the same example in Figure 7.1.

168

7.1. Defining Privacy for Multi-Relational Databases 169

hid st type

h02 NC owned

h03 NC rent

h04 CA rent

pid age hid
p10 45 h02

p11 46 h02

p12 47 h03

p13 48 h04

Person Household
pid age hid st type
p10 45 h02 NC owned

p11 46 h02 NC owned

p12 47 h03 NC rent

p13 48 h04 CA rent

Person-Household

Figure 7.1: A multi-relational database under foreign key constraints (left); a single
table database (right)

If a row of the Household table is removed, the foreign key relationship
between Household and Person suggests that all the persons associated
with this household should also be removed. If there is no bound on
the maximum household size, then there is no bound on the number of
persons removed in such an operation, and the sensitivity of a query on
the Person table will be unbounded.

This chapter first introduces differential privacy definitions for multi-
relational databases, and then describes three different methods for
handling highly sensitive queries that involve joins.

7.1 Defining Privacy for Multi-Relational Databases

To design differential privacy mechanisms for multi-relational databases,
we first need to define the meaning of differential privacy for them, and
also specify the set of admissible queries over multi-relational databases.
We will formalize these notions using the notation of Kotsogiannis et al.,
2019.

A multi-relational database consists of relations S = (R1, . . . , Rk),
and each relation has a set of attributes attr(Ri). We will denote the
domain of an attribute A ∈ attr(R) by dom(A), and the domain of a
set of attributes A ⊆ attr(R) as dom(A) = ΠA∈Adom(A). The domain
of a relation R is dom(attrs(R)).

Neighboring databases. To define differential privacy for a multi-
relational database, we must first define the notion of neighboring

170 Mechanisms for Multi-Relational Databases

databases. The decision about how to do this has important conse-
quences for the privacy property that results, and several different
definitions exist. We begin with the simplest (and most limited) defini-
tion of neighboring databases, used by PINQ (§ 7.3) and Flex (§ 7.4):
neighboring databases have the same set of relations and attributes,
and differ in exactly one row of one relation. We can define this notion
for both unbounded and bounded differential privacy (introduced in
Chapter 2).

Definition 7.1 (One-row neighbors for multi-relational databases—un-
bounded differential privacy). Two multi-relational databases D1 and D2
with the same set of relations (and attributes) (R1, . . . , Rk) are one-row
neighbors under unbounded differential privacy if:

• D1 contains exactly one more record than D2

• There exists exactly one relation Ri ∈ {R1, . . . , Rk}, and exactly
one record r ∈ Ri, such that r ∈ D1 but r ̸∈ D2

• All other records in D1 and D2 are identical

The PINQ system (§ 7.3) uses this definition for neighboring databases,
and targets unbounded differential privacy.

Definition 7.2 (One-row neighbors for multi-relational databases—bounded
differential privacy). Two multi-relational databases D1 and D2 with
the same set of relations (and attributes) (R1, . . . , Rk) are one-row
neighbors under bounded differential privacy if:

• D1 and D2 have the same number of records

• There exists exactly one relation Ri ∈ {R1, . . . , Rk} such that D1
and D2 differ in exactly one record in Ri (i.e. the record that
differs does not “switch relations”)

• All other records in D1 and D2 are identical

The Flex system (§ 7.4) uses this definition, and targets bounded dif-
ferential privacy. Neither of these definitions is capable of capturing the

7.1. Defining Privacy for Multi-Relational Databases 171

Person-Household foreign key constraint mentioned at the beginning
of this chapter. Instead, under these definitions, we may construct a
neighboring database by removing a household without removing the
corresponding persons from the Person table.

Beyond one-row neighbors: multi-relations with constraints. The
PrivateSQL system (§ 7.5) uses a richer notion of neighboring databases
based on database-specific privacy policies to specify privacy notions
at multiple resolutions. The neighboring definition considers key con-
straints within databases, denoted by C, in particular primary and
foreign key constraints. When one row of a relation is removed, multiple
rows from another table need to be removed due to the presence of a
foreign key constraint.

A key is an attribute A or a set of attributes A that act as the
primary key for a relation to uniquely identify its rows. We denote the
set of keys in a relation R by keys(R). A foreign key is a key used to
link two relations.

Definition 7.3. Given relations R,S and primary key Apk in R, a foreign
key can be defined as:

S.Afk → R.Apk ≡ S Afk
⋉Apk

R = S

where the semijoin is the multiset {s | s ∈ S,∃r, s[A] = r[B]}. That
is, for every row in s ∈ S there is exactly one row r ∈ R such that
s[Afk] = r[Apk]. We say that row s ∈ S refers to row r ∈ R (s → r),
and that relation S refers to relation R (S → R). The attribute (or set
of attributes) Afk is called the foreign key.

A set of k tables D = (D1, . . . , Dk) is called a valid database instance
of (R1, . . . , Rk) under the schema S and constraints C if D satisfies all the
constraints in C. All valid database instances under (S, C) are denoted
by dom(S, C).

Given a database relational schema S, PrivateSQL defines a privacy
policy as a pair P = (R, ϵ), where R is a relation of S and ϵ is the privacy
loss associated with the entity in R. The relation R is denoted as the
primary private relation. The output of a mechanism enforcing P = (R, ϵ)
does not significantly change with the addition/removal of rows in R.

172 Mechanisms for Multi-Relational Databases

pid age hid
p10 45 h02

p11 46 h02

p12 47 h03

p13 48 h04

pid age hid
p10 45 h02

p11 46 h02

p12 47 h03

p13 48 h04

Person Household

hid st type

h02 NC owned

h03 NC rent

h04 CA rent

hid st type

h02 NC owned

h03 NC rent

h04 CA rent

Person Household

Figure 7.2: Neighboring database instances under Household Policy (left); Neigh-
boring database instances under Person Policy (right).

To capture privacy policies and key constraints, PrivateSQL defines
a notion of neighboring databases inspired by Blowfish privacy (He et
al., 2014). For two database instances D and D′, we say that D is a
strict superset of D′ (denoted by D ⊐ D′) if (a) ∀i,Di ⊇ D′

i and (b)
∃i,Di ⊃ D′

i. That is, all records that appear in D′ also appear in D and
there is at least one row in a relation of D that does not appear in D′.

Definition 7.4 (Neighboring Databases). Given a schema S with a set
of foreign key constraints C, and a privacy policy P = (Ri, ϵ), for a
valid database instance D = (D1, . . . , Dk) ∈ dom(S, C), we denote by
⊖C(D, Ri) a set of databases such that ∀D′ ∈ ⊖C(D, Ri):

• ∃r ∈ Di, but r ̸∈ D′
i, and

• D′ satisfies C, and

• ̸ ∃D′′ that satisfies C and D ⊐ D′′ ⊐ D′.

That is, D′ is a valid database instance that results from deleting a
minimal set of records from D, including r. We call database instances
D,D′ neighboring databases w.r.t. relation Ri if D′ ∈ ⊖C(D, Ri).

For example, consider the database instances from Figure 7.1 that
has a foreign key constrain between Person table and Household table.
We show two types of privacy policy in Figure 7.2. The pair of neigh-
boring tables are under Person privacy policy P = (Person, ϵ). When
person p10 is removed, the Household table is unchanged. However,
under the Household privacy policy P = (Household, ϵ), removing h02
from the Household table results in deleting two rows in the Person

7.2. DP Systems for Multi-relational Databases 173

table. For this case, neighboring databases differ in both the primary pri-
vate relation Household as well as a secondary private relation Person.

Definition 7.5 (DP for Multiple Relations with Constraints). Given a
schema S with foreign key constraints C and privacy policy P = (R, ϵ)
be a policy. A mechanismM : dom(S, C)→ Ω is P -differentially private
if for every set of outputs O ⊆ Ω, ∀D ∈ dom(S, C), and ∀D′ ∈ ⊖C(D, R):∣∣ln (

Pr[M(D) ∈ O]/Pr[M(D′) ∈ O]
)∣∣ ≤ ϵ

Most variants of differential privacy that apply to relational data can
be captured using a single private relation and foreign key constraints
on an acyclic schema (Arapinis et al., 2016; Chen and Zhou, 2013;
Karwa et al., 2011; Kasiviswanathan et al., 2013; Dwork et al., 2010; Lu
et al., 2014). For instance, a graph G = (V,E) can be represented as a
schema with relations Node(id) and Edge(src_id, dest_id) with foreign
key references from Edge to Node (src_id → id and dest_id → id).
Edge-DP (Karwa et al., 2011) is captured by P -DP by setting Edge as
the primary private relation R, Node-DP (Kasiviswanathan et al., 2013)
is captured if we set Node as R. Under the latter policy, neighboring
databases differ in one row from Node and all rows in Edge that refer to
the deleted Node rows. Similarly, user-level-DP and event-level-DP are
also captured using a database schema User(id, ...), Event(eid, uid, ...)
with events referring to users via a foreign key (uid→ id). By setting the
Event (User) as the primary private relation, we get Event-DP (User-DP,
resp.) (Dwork et al., 2010).

7.2 DP Systems for Multi-relational Databases

Existing DP systems for multi-relational databases vary in their pri-
vacy guarantees, supported queries, and utility optimization techniques.
We summarize four representative systems from the literature in Ta-
ble 7.1. First, for the privacy guarantees, PINQ system (McSherry,
2009) and Flex (Johnson et al., 2018) consider one-row neighbor for
multi-relational databases. Flex currently develops algorithms that
supports bounded DP. GoogleDP (Wilson et al., 2020) considers key
constraints from a user table to other tables and hence offers only one

174 Mechanisms for Multi-Relational Databases

Table 7.1: DP Systems for Multi-relational Databases

System Neighbors Class of queries Bounding sens.
PINQ One-row Grouping, equijoins

with group keys
Grouping first before join

GoogleDP Constraints
(single policy)

Grouping, semijoins on
foreign key, no
correlated subqueries

Manually specified
bound + sampling

Flex One-row Grouping, equijoins
including self-joins,
semijoins, some
correlated subqueries

Smooth sensitivity

PrivateSQL Constraints
(multiple
policies)

Grouping, equijoins
including self-joins,
semijoins, correlated
subqueries

Truncation +
automatically learned
threshold

type of privacy policy while PrivateSQL (Kotsogiannis et al., 2019)
considers multiple possible privacy policies over neighboring databases
with foreign key constrains (e.g. person-policy or housedhold policy in
Figure 7.2).

PINQ and GoogleDP support a very limited class of queries. Flex
supports a larger class of queries summarized in Figure 7.3. Only
counting queries with grouping (with user-defined group keys) are
supported; the language does not include subqueries or other aggregation
functions. Equijoins are supported, via queries of the form:

SELECT COUNT(*) FROM T1, T2 WHERE a = b

In addition, PrivateSQL can support equijoins and subqueries in the
where clause, which can be correlated to attributes in the outer query.
For example,

SELECT COUNT(*) FROM T1 WHERE
(SELECT COUNT(*) from T2 WHERE a=b)=2

The complete query grammar can be found in the full paper of Pri-
vateSQL (Kotsogiannis et al., 2019).

Note that as the standard SQL GROUP BY operator leaks the active
domain. Hence, all the database systems that support DP have to handle

7.2. DP Systems for Multi-relational Databases 175

A ∈ Attributes
V ∈ Constants
T ∈ Tables

Q ::= SELECT A∗, COUNT(*) FROM T + WHERE Exp GROUP BY A∗

Exp ::= A Op V | A Op A | Exp AND Exp | Exp OR Exp
Op ::= = | > | <

Figure 7.3: Simple Queries for Multi-Relational Databases. GROUP BY operators
require user-defined keys.

this operator carefully. In particular, when grouping is at the end of a
query, then PINQ, Flex, and PrivateSQL require analyst-specified
group keys. GoogleDP uses a slightly different approach, described in
Section 7.6.

The major challenge of supporting queries over multi-relational
databases is that global sensitivity is unbounded for counting queries
that involve joins (much like the triangle-counting query in Chapter 6).
The join of two tables T1 and T2 finds records in the two tables with
matching values for the join key; multiple rows in T2 might match a
single row in T1, and each match results in a row in the output of the
join. Adding a new row to T1 might therefore result in many new rows
in the output of the join—the number of new rows depends on the values
in T2.

PINQ (Section 7.3) supports only a restricted form of joins, that
allows linking unique records. GoogleDP samples a manually specified
number of samples to limit the sensitivity of a query. Flex (Section 7.4)
uses smooth sensitivity (Nissim et al., 2007) to bound the sensitivity of
join queries via local sensitivity. PrivateSQL (Section 7.5) truncates
database tables before joining, to enforce an upper bound on the global
sensitivity of joins.

As PINQ, Flex, and PrivateSQL share similar rules for their
sensitivity analysis, we summarize their rules in Table 7.2. Each one
provides a bound on sensitivity (for queries themselves) and on stability,
which bounds the difference in the outputs of relational transformations
(e.g. a join) run on two neighboring multi-relational databases (a formal
definition is given in the next section). The stability of a sequence of

176 Mechanisms for Multi-Relational Databases

transformations is used to bound the sensitivity of a counting query
over the transformations’ results. The first key difference is that Flex
tracks a data-dependent sensitivity/stability in the table, and hence we
see x appears in the function; while PINQ and PrivateSQL tracks the
global sensitivity/stability bound. Another difference is how Flex and
PrivateSQL handle join operators. In particular, PrivateSQL keeps
track of the keys and hence obtains tighter sensitivity/stability bounds.
The specifics of each approach are discussed in the following sections.

7.3 PINQ

Privacy Integrated Queries (PINQ) proposed by McSherry, 2009 is a
platform that answers SQL-like queries on databases with a differential
privacy guarantee. This platform is built on top of LINQ declarative
query language. The techniques are generalizable to any SQL-like queries.
For each query received, the platform automatically analyzes the query
and then perturbs the query answer with the right amount of noise.

Stability. Each SQL-like query is treated as a sequence of database
transformation operators, like SELECTION, GROUP BY, and JOIN. Each
transformation is associated with a stability property that controls the
privacy loss over the input databases.

Definition 7.6 (Transformation stability). A transformation T is said to
be c-stable if for any two input data sets A and B,

|T (A)⊕ T (B)| ≤ c× |A⊕B|, (7.1)

where ⊕ represents the symmetrical difference between two multi-sets.

For instance, SELECTION, PROJECTION, COUNT, and COUNT DISTINCT
all have a stability of 1; and GROUP BY has a stability of 2. Transforma-
tions with bounded stability constants propagate differential privacy
guarantees made of their outputs back to their inputs, diminished by
their stability constant.

Theorem 7.1. Let M provide ϵ-differential privacy, and let T be an
arbitrary c-stable transformation. The composite computation M ◦ T
provides (ϵ× c)-differential privacy.

7.3. PINQ 177

Q
ue

ry
Se

ns
it

iv
it

y
P

IN
Q

:
S

(·)
F

le
x:

Ŝ
(k

) (·,
x

)
P

ri
va

te
SQ

L:
∆̂

R(
·)

C
ou

nt
(r

)
S

(r
)

Ŝ
(k

)
R

(r
,x

)
∆̂

R(
r)

C
ou

nt
G

1
..

G
n

(r
)

2S
(r

)
2Ŝ

(k
)

R
(r

,x
)

2∆̂
R(

r)

R
el

at
io

n
St

ab
ili

ty
P

IN
Q

:
S

R
(·)

F
le

x:
Ŝ

(k
)

R
(·,

x
)

P
ri

va
te

SQ
L:

∆̂
R(

·)
t

1
1

1
fo

r
R;

0
fo

r
re

st
⋆

r 1
▷◁ a
=

b
r 2

N
.A

.
m

f k
(a

,r
1
,x

)Ŝ
(k

)
R

(r
2
,x

)+
m

f(
a
,r

1
)∆̂

R(
r 2

)+
G

en
er

al
ca

se
m

f k
(b

,r
2
,x

)Ŝ
(k

)
R

(r
1
,x

)+
m

f(
b,

r 2
)∆̂

R(
r 1

)+
Ŝ

(k
)

R
(r

1
,x

)Ŝ
(k

)
R

(r
2
,x

)
∆̂

R(
r 1

)∆̂
R(

r 2
)

N
o

co
m

m
on

an
ce

st
or

s
m

ax
(m

f k
(a

,r
1
,x

)Ŝ
(k

)
R

(r
2
,x

),
m

ax
(m

f(
a
,r

1
)∆̂

R(
r 2

),
m

f k
(b

,r
2
,x

)Ŝ
(k

)
R

(r
1
,x

))
m

f(
b,

r 2
)∆̂

R(
r 1

))
Sp

ec
ia

lc
as

es
2S

R
(r

1
)·

S
R

(r
2
)⋆

m
f(

b,
r 2

)∆̂
R(

r 1
)+

∆̂
R(

r 2
),

w
he

re
a

∈
ke

ys
(r

1
)⋆

Π
a

1
,.

..
,a

n
r

S
R

(r
)

Ŝ
(k

)
R

(r
,x

)
∆̂

R(
r)

σ
φ

r
S

R
(r

)
Ŝ

(k
)

R
(r

,x
)

∆̂
R(

r)
γ

a
1

,.
..

,a
n

r
S

R
(r

)
Ŝ

(k
)

R
(r

,x
)

∆̂
R(

r)
τ a

,k
r

N
.A

.
N

.A
.

k
∆̂

R(
r)

T
ab

le
7.

2:
Se

ns
it

iv
ity

an
d

St
ab

ili
ty

.(
⋆
)

P
IN

Q
su

pp
or

ts
a

lim
it

ed
fo

rm
of

jo
in

s
th

at
tr

un
ca

te
s

al
le

xc
ep

t
on

e
m

at
ch

ed
re

co
rd

(d
es

cr
ib

ed
in

§7
.3

).
(⋆

)
P

ri
va

te
SQ

L
tr

ac
ks

th
e

ke
y

se
t

of
th

e
re

la
ti

on
s

an
d

re
w

ri
te

s
th

e
qu

er
y

ba
se

d
on

th
e

pr
iv

ac
y

po
lic

y
R

(d
es

cr
ib

ed
in

§7
.5

).
N

ot
at

io
n:

C
ou

n
t(

r)
co

un
ts

th
e

ro
w

s
in

re
la

ti
on

r;
C

ou
nt

G
1

..
G

n

(r
)

gr
ou

ps
ro

w
s

in
r

by
th

e
sp

ec
ifi

ed
gr

ou
ps

G
1
,.

..
,G

n
;r

1
▷◁ a
=

b
r 2

jo
in

s
r 1

an
d

r 2
on

a
=

b;
Π

a
1

,.
..

,a
n

r
pr

oj
ec

ts
r

on
at

tr
ib

ut
es

a
1
,.

..
,a

n
;σ

φ
r

se
le

ct
s

ro
w

s
in

r
th

at
sa

ti
sf

y
φ

;γ
a

1
,.

..
,a

n
r

gr
ou

ps
r

by
at

tr
ib

ut
es

a
1
,.

..
,a

n
;τ

a
,k

r
tr

un
ca

te
s

ro
w

s
in

r
th

at
ha

ve
a

va
lu

es
ap

pe
ar

m
or

e
th

an
k

ti
m

es
;m

f
:

m
ax

im
um

fr
eq

ue
nc

y.

178 Mechanisms for Multi-Relational Databases

Unlike other unary transformations, the JOIN operator takes two
datasets as input with key selection functions for each, and returns
the list of all pairs of elements whose keys match. It is possible that a
single record can change arbitrarily number of output records, and thus
unrestricted join operators have unbounded stability.

When to use PINQ. In PINQ, only a restricted form of JOIN is
considered. This form of joins requires that each input data set is first
grouped by its join keys, and the list of groups are then joined using
their group keys. The result is a compact representation of the output of
the original JOIN, as each pair of groups could in principle be expanded
to their full Cartesian product. This type of join has bounded stability,
as each input record participates in at most one pair of groups, and
as with GROUP BY the stability constant is at most 2. However, this
restriction limits each join key result in a single record no matter how
large the group is. Hence, you cannot extract more information privately.
It is still better than leaving the stability unbounded and this join is
useful to link unique identifiers between data sets.

PINQ has an open-sourced prototype, implemented as part of Lan-
guage Integrated Queries (LINQ). Despite its limited support of join
queries, the stability analysis has influenced the design of many systems
or frameworks for DP.

7.4 Flex

The Flex system (Johnson et al., 2018) uses an efficiently computed
upper bound on local sensitivity, called elastic sensitivity, to bound
the sensitivities of queries with general joins. Elastic sensitivity does
not require modifications to the data, and it can be easily applied as a
post-processing step to an existing join query. However, because elastic
sensitivity is an upper bound on local sensitivity, a framework like
smooth sensitivity (Nissim et al., 2007) must be used to ensure that
the sensitivity itself does not reveal too much about the data. The use
of smooth sensitivity tends to increase noise, resulting in less accurate
answers.

7.4. Flex 179

Flex supports counting queries with grouping and equijoins, includ-
ing self-joins and semijoins, and some kinds of subqueries. As described
in Section 7.1, Flex targets one-row bounded differential privacy. Flex
is limited to bounded differential privacy, because the smooth sensitivity
framework is defined only for this setting.

The rules for calculating elastic sensitivity are given in Figure 7.2,
in the “Flex” column. In these rules, Ŝ(k)(r, x) denotes the elastic
sensitivity of the relation r at distance k from the actual database x,
and Ŝ

(k)
R (r, x) denotes the stability of relation r at distance k from

the actual database x. In PINQ, the sensitivity of a counting query
is exactly equal to the stability of the underlying relation, and the
sensitivity of counting queries with grouping is doubled. The stability
of a base table in PINQ is 1.

Maximum frequency. The stability of relational joins is defined in
terms of mfk(a, r, x), which denotes the maximum frequency of any
single value for attribute a in relation r for actual database x. The
frequency freq(v) of the value v ∈ dom(a) is the number of times
attribute a takes the value v in the relation; the maximum frequency
is maxv∈dom(a) freq(v). The mfk function, defined in Figure 7.4, is an
efficiently computed upper bound on maximum frequency for relational
transformations. The base case for mfk relies on the mf function, which
is defined on base tables; mf(a, t, x) returns the actual maximum fre-
quency for attribute a in table t of the database x. These values can be
precomputed from the database x itself and stored as metadata.

mfk :: a → R → Dn→ N
mfk(a, t, x) = mf(a, t, x) + k
mfk(a1, r1 ▷◁

a2=a3
r2, x) ={

mfk(a1, r1, x)mfk(a3, r2, x) a1 ∈ r1

mfk(a1, r2, x)mfk(a2, r1, x) a1 ∈ r2

mfk(a, Πa1,...,an r, x) = mfk(a, r, x)
mfk(a, σφr, x) = mfk(a, r, x)

Figure 7.4: Upper bound on maximum frequency from Flex

180 Mechanisms for Multi-Relational Databases

Bounding stability. The intuition behind elastic sensitivity is as follows:
for a join r1 ▷◁

a=b
r2, each row in r1 might match mf(b, r2, x) rows in r2 (in

the worst case); symmetrically, each row in r2 might match mf(a, r1, x)
rows in r1 (in the worst case). We can therefore increase the number
of rows in the result of the join by either mf(a, r1, x) (by adding a row
to r2) or mf(b, r2, x) (by adding a row to r1). To produce a maximal
increase, we take the maximum of these two. This approach works when
there are no self-joins (the “no common ancestors” case in Figure 7.2).

For queries with self-joins, the increase might be even larger, because
it is possible to add a row to both r1 and r2 simultaneously (e.g. if they
are actually the same relation!). In this case, new matches from both
relations could occur, and so we add them together (the “general case”
case in Figure 7.2).

Flex: applying elastic sensitivity. Since elastic sensitivity is computed
using (exact) statistics from the data, scaling noise to elastic sensitivity
directly might reveal more about the data than we intend. To address
this issue, the smooth sensitivity framework (Nissim et al., 2007) is
used to ensure that the sensitivity of a query does not reveal too much
about the data. The Flex mechanism is defined as follows:

Definition 7.7 (The Flex mechanism). For query q on database x of
size n, the following mechanism provides (ϵ, δ)-differential privacy:

1. Set β = ϵ
2 log(2/δ)

2. Calculate S = maxk=0,...,n e
−βkŜ(k)(q, x)

3. Release q(x) + Lap
(

2S
ϵ

)
The Flex mechanism is an instance of the smooth sensitivity frame-

work with Laplace noise. Note that the elastic sensitivity is doubled in
step (3)—this doubling of sensitivity is required by the smooth sensi-
tivity framework, and can cause results to be less accurate than under
global sensitivity-based approaches.

The approach requires a databases of fixed size (n), and is therefore
limited to bounded differential privacy—a limitation inherited from

7.5. PrivateSQL 181

smooth sensitivity. In addition, the definition requires taking the maxi-
mum over all values of k between 0 and n, which can be computationally
difficult if n is large. Fortunately, for the specific definition of elastic
sensitivity, it can be shown that this maximum will always occur at
small values of k: only values of k up to j(q)2

β need to be considered,
where j(q) denotes the number of syntactic joins in the query q.

When to use Flex. Flex is available as part of the open-source
Chorus system (Johnson et al., 2020). Chorus is a framework for
building systems for differential privacy, and requires more setup before
deployment than systems like GoogleDP. However, Chorus works with
any SQL database and supports a larger class of SQL-like queries than
PINQ and GoolgeDP—in particular, queries that involve joins. Flex
handles one query at a time and has a more efficient implementation of
the Flex mechanism than the standard smooth sensitivity algorithm.

7.5 PrivateSQL

When the query workload is known in advance, the PrivateSQL
system (Kotsogiannis et al., 2019) will first generate a set of query views
differentially privately, and then answer all the queries on top of these
private views as a post-processing step. This allows more queries to be
answered given a fixed privacy budget and also prevents timing attacks.

This section focuses on how PrivateSQL answers each view query
V differentially privately and handles multi-relational databases with
key constraints. First, compared to the sensitivity and stability rules
of Flex in Figure 7.2 and the maximum frequency rules in Figure 7.5,
PrivateSQL tracks keys in the query plan and hence allows much
tighter upper bound for sensitivity of join queries. Second, PrivateSQL
supports complex privacy policies where neighboring databases differ
more than one row due to the constraints between the primary private
table and the secondary private tables. Third, unlike Flex that applies
local-sensitivity-based approach, PrivateSQL considers Lipschitz ex-
tension (Section 6.5) by transforming a given query Q to Q′ by inserting
truncation operators, such that the new query Q′ has a bounded global
sensitivity and also well approximates the original query answer.

182 Mechanisms for Multi-Relational Databases

Operations mf(a′, s), a′ ⊆ attr(s) keys(s)
s = r1 ▷◁

a1=a2
r2 max(mf(ā2, r1)mf(a2, r2), {a′ ∈ keys(r2) | a1 ∈ keys(r1)}∪

mf(ā1, r2)mf(a1, r1)) {a′ ∈ keys(r1) | a2 ∈ keys(r2)}
where āi = a′ − attr(ri)

s = Πa1,...,an r mf(a′, r) {a′ ⊆ attr(s) | a′ ∈ keys(r)}
s = σφr mf(a′, r) {a′ ⊆ attr(s) | a′ ∈ keys(r)}
s = γa1,...,an r mf(a′, r) {(a1, . . . , an)}∪

{a′ ⊆ attr(s) | a′ ∈ keys(r)}
s = γCOUNT

a1,...,an
r mf(a′, r) {(a1, . . . , an)}∪

{a′ ⊆ attr(s) | a′ ∈ keys(r)}
s = τa,kr min(k, mf(a′, r)) if a ⊆ a′;

mf(a′, r), o.w. {a′ ⊆ attr(s) | a′ ∈ keys(r)}

Figure 7.5: Upper bound on maximum frequency and key set from PrivateSQL

We will start with simple privacy policy that neighboring databases
only differ one row in the primary private table (e.g. Person Policy in
Figure 7.2) to illustrate how PrivateSQL bounds sensitivity.

Bounding Sensitivity via Truncation Rewrite. The sensitivity bounds
produced by the sensitivity calculator can be dependent on the max-
frequency bounds on base relations. Adding truncation operators to
the view query expression can bound the contributions of tuples from
the base relations to the join output. These operators delete tuples
that contain an attribute combination appearing in a join and whose
frequency exceeds a truncation threshold k specified in the operator.

Definition 7.8 (Truncation Operator). The truncation operator τa,k(r)
takes in a relation r, a set of attributes a and a threshold k and for all
v ∈ dom(a), if the frequency of v in r is more than k, then any rows
from r taking v for a is removed.

Truncation rewrite (see Algorithm 2) adds truncation operators
to a view V and forms a new query plan V τ . The algorithm takes as
input a view V , a primary private relation R, and a vector of truncation
thresholds k, indexed by the attribute subset to which the threshold
applies. It traverses every path pl from relation rl to the root operator
and every join r1 ▷◁a1=a2 r2 on this path. If one of the join attributes
is from Rl—say a1 ⊆ rl—and a1 is not a key for r1 and the primary

7.5. PrivateSQL 183

Algorithm 2: Truncation Rewrite (V, R,k)
Initialize V τ ← V

for every path pl from leaf relation rl to root in V do
for every r1 ▷◁a1=a2 r2 on pl, where a1 ⊆ attr(rl) do

▷(semijoin is also treated as a special equijoin)
if a1 /∈ Keys(r1) and R is a base relation of r2 then

k ← ka1

Insert τa1,k(rl) above rl in V τ

A ← A∪ (a1)
return V τ

private table R appears as a base relation in the expression r2, then we
insert τa1,k(rl) above rl in V τ .

After applying truncation rewrite to V , the estimated sensitivity no
longer depends on the maximum frequency, but rather on the truncation
thresholds. If the thresholds are set in a data independent manner,
or learned using a differentially private mechanism, the sensitivity
outputted by the calculator for V τ is the global sensitivity of V τ for
simple policies. Note that this truncation operator introduces bias to
the output and the choice of the truncation threshold affects the final
query output.

For example, consider calculating the sensitivity of a view query:
SELECT relp, race, cnt FROM Person P, (SELECT COUNT(*) AS cnt, hid FROM

Person GROUP BY hid) AS P2 WHERE P2.hid=P.hid

This query can be expressed using a relational algebra expression:
πrace,relp,cnt(Person ▷◁hid (γCOUNT

hid (Person)) (7.2)
Based on the sensitivity rule of PrivateSQL from Table 7.2, this query
would have a sensitivity bound of (F · 3 + 2), where F is the maximum
frequency of hid in the Person relation. Now we insert a truncation
operator before Person relation.

πrace,relp,cnt(τhid,k(Person) ▷◁hid (γCOUNT
hid (Person)) (7.3)

The truncation operator cuts down the maximum frequency of hid to
k so that the sensitivity now becomes 3k, even when the maximum
frequency of the household id in Person relation is unbounded.

184 Mechanisms for Multi-Relational Databases

Handling Complex Policies via Semi-join Rewrite. Under complex
privacy policies, neighboring databases differ in the primary private
relation as well as other secondary private relations. For example, con-
sider the Household privacy policy in Figure 7.2 — when a household
row from the Household relation is removed, all the rows associated
this this household will be removed. Computing the sensitivity of the
query plans expressed in Eqns. (7.2) and (7.3) directly using the rules
fail to give the true sensitivity of the query under the Household policy,
as the Household relation never appears in this query plan. Hence,
PrivateSQL introduces the semijoin rewrite that transforms view V

into V ⊖ such that the transformed view will give the correct sensitivity
for complex privacy policies.

This rewrite works in two steps. First, it replaces every secondary
private base relation rj in V with a semijoin expression that makes
explicit the transitive dependence between the primary private relation
R and rj . The resulting expression V ⋉ is such that V (D) = V ⋉(D).
Moreover, the down sensitivity is now correct ∆R(V ⋉,D) = ∆C

R(V ⋉,D)
since transitive deletion is captured by the semijoin expressions. Second,
to handle the high sensitivity of secondary private base relations, we
add truncation operations using (Algorithm 2) to the semijoin expres-
sions and transform V ⋉ to V ⊖. Follow these two steps, the query plan
expressed in Eqn. (7.2) will be transformed to

πrace,relp,cnt((τhid,k(Person) ⋉hidHousehold) ▷◁hid

(γCOUNT
hid (τhid,k(Person) ⋉hidHousehold)) (7.4)

This transformed expression allows the correctness of the query sensi-
tivity calculation and also the correctness of the query answer.

Readers can refer to the full paper of PrivateSQL for the details
of the sensitivity definition, and the semi-join rewrite, and the private
learning of the truncation thresholds.

When to use PrivateSQL. If the true local sensitivity of a database
instance is very large, then local sensitivity-based mechanism has to
suffer large noise injection to the query answer, no matter how tight
the upper bound is. For this case, truncation rewrites can help bring

7.6. GoogleDP 185

down the noise if no many rows are truncated from the relations.
PrivateSQL provides a flexible approach to handle privacy policies at
different resolutions and algorithms for handling correlated subqueries.
However, the current solutions only work for databases with foreign-
key constraints. Extensions to general constraints are interesting open
problems.

7.6 GoogleDP

GoogleDP (Wilson et al., 2020) handles a special type of privacy policy
for multi-relational databases with constraints: user-level DP. The ap-
proach is similar to the truncation used to handle joins in PrivateSQL.
If a single user may contribute k records to the database, then the
stability of a base table is actually k—not 1, as it is for all approaches
listed in Table 7.1. GoogleDP assumes that a single user may contribute
many records, and allows the analyst to specify a threshold k to bound
the contribution of each user. The system applies a truncation rewrite
to base tables that enforces the specified bound. The current implemen-
tation handles a large number of queries, but no correlated subqueries.
Hence, it works well for a simpler schema that has a well defined “user”
relation and simple SQL queries.

The same effect can be achieved in the other systems described in
this Chapter by changing the stability of a base table (row t in Table 7.1)
from 1 to k, and applying the truncation rewrite to base tables. The
other rules for calculating stability and sensitivity remain the same.

GoogleDP also implements a novel strategy for GROUP BY. The chal-
lenge of GROUP BY is that the absence of a histogram bin in the results
indicates (with certainty) a count of 0 for that bin. The other approaches
in this Chapter solve this problem by requiring the analyst to specify the
set of histogram bins. GoogleDP uses an approach called τ -thresholding
(Korolova et al., 2009) instead. The idea is to construct the set of his-
togram bins based on the data (which would normally violate differential
privacy), but then to discard bins with counts below a threshold τ . This
thresholding creates uncertainty about why a particular bin is missing—
it could have had a count of 0, or it could have been below the threshold
τ . The τ -thresholding approach satisfies (ϵ, δ)-differential privacy.

186 Mechanisms for Multi-Relational Databases

The GoogleDP system has a well-maintained open-source imple-
mentation that acts as a standalone library or integrates directly with
PostgreSQL.

8
Frameworks for Differentially Private Analysis

A wide range of frameworks have been developed by researchers and
practitioners for differentially private analyses. They are useful for
users with different levels of expertise in differential privacy, as shown in
Figure 8.1. For experts in differential privacy, they can design a program
from scratch for any applications or queries. However, they need to
provide privacy proofs for their algorithms and show their accuracy
guarantee for their interested applications or queries. Even experts can
make non-trivial errors in this algorithm design process. For example,
prior work by Lyu et al., 2017 shows that pseudo-codes in research
papers fail satisfying differential privacy as they claimed. Even the
implementations of basic algorithms like the Laplace Mechanism and
Exponential Mechanism can fail the desired privacy guarantee due to
their use of floating point arithmetic (Mironov, 2012; Ilvento, 2020).

To address these challenges, programming frameworks including
Ektelo (Zhang et al., 2020), GoogleDP (Wilson et al., 2020), Smart-
Noise (Smart Noise n.d.), IBM diffprivlib (IBM Differential Privacy
Library n.d.), PrivInfer (Barthe et al., 2016), LightDP (Zhang and Kifer,
2017) etc have been built to offer common packages and programs for
differential privacy. Using these frameworks, programmers can directly

187

188 Frameworks for Differentially Private Analysis

Figure 8.1: Frameworks for DP Analysis

use the state-of-the-art implementations to build new programs instead
of starting from scratch. Besides the basic programming framework,
there are additional features proposed in the literature to support DP
programmers’ programming experience. For example, Fuzz (Haeberlen
et al., 2011) raises the issue of side-channel attacks on programs that
have a data-dependent running time and offers a general approach to
prevent such attacks. GUPT (Mohan et al., 2012) and DPella (Vesga
et al., 2020) offer an automatic accuracy analysis to the programmers.
OpenDP project (OpenDP n.d.) provides a platform for trusted and
open-source implementations of differentially private algorithms.

Chorus (Johnson et al., 2020) provides a framework for implementing
differentially private algorithms that interoperate with existing SQL
databases. Chorus does not propose a new approach or algorithm;
instead, Chorus enables existing algorithms to scale more effectively
to large datasets by interoperating with an existing high-performance
database. For example, the sample & aggregate framework (Section 6.4)
requires running the same query many times over subsets of the database.
Chorus provides a query rewriting module to allow the transformation of
an analyst-specified query into a new one that implements the necessary
execution over subsets of the data. This idea has since been adopted
in similar modules in GoogleDP (Wilson et al., 2020) and SmartNoise
(Smart Noise n.d.) to interoperate with scalable databases.

How about users who do not know how to write a differentially pri-
vate programs? We have seen in Chapter 7 that frameworks like PINQ

8.1. ϵktelo 189

(McSherry, 2009), Flex (Johnson et al., 2018), and PrivateSQL (Kotso-
giannis et al., 2019) offer SQL-like query interface for data analysts to
access the private data. With these end-to-end database systems, the
data analysts are not required to design or write a differentially private
program, but simply write a SQL-like query with a privacy budget.
The system itself ensures that a differentially private mechanism is run
with the privacy budget specified by the data analyst. GoogleDP for
PostgreSQL (Wilson et al., 2020) and SmartNoise also support similar
framework and Airavat (Roy et al., 2010) builds this end-to-end frame-
work on top of a MapReduce system. However, these frameworks do not
design for utility-optimal programs. Many state-of-the-art algorithms
have not been implemented or considered in them. Moreover, the data
analyst usually does not know how to set the privacy budget for each
of their queries. This motivated another class of accuracy-aware frame-
works for non-experts in DP, such as APEx (Ge et al., 2019) and PSI
(Murtagh et al., 2018). In particular, APEx allows the data analyst to
specify a query with an accuracy requirement for the query. On behalf
of the data analyst, APEx picks the best algorithm that consumes the
least privacy budget and returns an answer that satisfies the accuracy
requirement of the data analyst.

Next, we will use ϵktelo to illustrate how a DP expert can effectively
write a DP program (Section 8.1) and APEx to illustrate how a non-
expert can effectively query a DB system (Section 8.2).

8.1 ϵktelo

ϵktelo is a programming framework and system that aids programmers in
developing programs with differential privacy guarantee and high utility.
This program supports a large class of statistical tasks such as releasing
contingency tables, multi-dimensional histograms, answering OLAP
and range queries, and even implementing private machine learning
algorithms. In ϵktelo, differentially private algorithms are described
using plans composed over a rich library of operators. Most of the plans
are linear sequence of operators, but ϵktelo also supports plans with
iteration, recursion, and branching. Five operator classes are carefully
chosen based on their input-output specifications: (a) transformation,

190 Frameworks for Differentially Private Analysis

(b) query, (c) inference, (d) query selection, and (e) partition selection.
Each operator belongs to one of these five classes.

Algorithm 3: ϵktelo CDF Estimator
1: D ← Protected(source_uri) ▷ Init
2: D ← Where(D, sex ==‘M’ AND age ∈ [30, 39] ▷ Transform
3: D ← Select(salary) ▷ Transform
4: x← T-Vectorize(D) ▷ Transform
5: P← AHPPartition(x, ϵ/2) ▷ Partition Select
6: x̄← V-ReducedByPartition(x,P) ▷ Transform
7: M←Identity(|x̄|) ▷ Query Select
8: y← VecLaplace(x̄,M, ϵ/2) ▷ Query
9: x̂← NNLS(P,y) ▷ Inference
10: Wpre ← Prefix(|x|) ▷ Query Select
11: return Wpre · x̂ ▷ output

We use Algorithm 3, a ϵktelo plan from the full paper to illustrate
these operators. This plan takes as input a table D with schema of
three attributes Age, Gender, and Salary and estimate the empirical
cumulative distribution function (CDF) of the Salary attribute for males
in their 30’s. The plan first applies transformation operators to select
rows that satisfy the conditions (Line 2) and then project only the Salary
attribute (line 4). Then it applies another transformation operator to
construct a vector of counts x for, where entry x[i] represent the number
of rows for each salary value i.

Then the plan spends ϵ/2 privacy budget to partition the data
domain using a partition selection operator (Line 5). The resulted
partition P is used to transform the data vector x into a new vector of
counts x̄ over the partitions. Then an identity query is selected (Line
7) and Laplace mechanism is applied to the identity query over x̄ with
the remaining privacy budget ϵ/2 (Line 8). The sensitivity of the query
M will be automatically computed by ϵktelo.

Given the noisy counts y over the partition P, the plan applies
inference operator NNLS (short for non-negative least squares) to infer
non-negative counts in the original vector space of x (Line 9). Finally,
the CDF query is selected (Line 10) and applied to the inferred noisy
counts x̂ (line 11).

8.2. APEx 191

This framework demonstrates four important design principles:

• Expressiveness: a large set of state-of-the-art differentially private
algorithms on tabular data can be written as ϵktelo plans.

• Privacy “for free”: any plan written in ϵktelo automatically satisfies
differential privacy.

• Reduced privacy verification effort: the implementation of indi-
vidual operators in ϵktelo needs to be vetted only once and can
be reused in different plans.

• Transparency: comparisons of different differentially private pro-
grams in terms of ϵktelo plans are intuitive and easy.

When to use ϵktelo. ϵktelo is the first DP programming framework
with predefined python packages for complex algorithms that handle
counting-based queries. The same set of design principles in the frame-
works or toolboxes are also offered in new DP tools developed by the
industry, including GoogleDP, IBM diffprivlib, SmartNoise, OpenDP,
Chorus, etc. These tools include DP primitives such as Laplace mecha-
nism, Guassian mechanism, and packages for advanced privacy composi-
tion algorithm (Section 2.4.2) in different programming languages. This
makes differential privacy programming more accessible to researchers
and developers.

8.2 APEx

The general purpose differentially private query answering systems
(e.g. PINQ McSherry, 2009) allow users to write differentially private
programs and ensure that every program expressed satisfies differential
privacy. However, to achieve high accuracy, the analyst typically would
need to know the optimal methods from the privacy literature on how
to add noise to answers. These systems do not provide any guarantees
to the data analyst on the quantity they really care about, namely
accuracy of query answers. In fact, most of these systems take a privacy
level (ϵ) as input and make sure that differential privacy holds, but
leave accuracy unconstrained.

192 Frameworks for Differentially Private Analysis

APEx proposed by Ge et al., 2019 allows data analysts to explore
a sensitive dataset D held by a data owner by posing a sequence of
declaratively specified queries that can capture typical data exploration
workflows. The system aims at achieving a dual goal: (1) since the data
are sensitive, the data owner would like the system to provably bound
the information disclosed about any one record in D to the analyst;
and (2) since privacy preserving mechanisms introduce error, the data
analyst must be able to specify accuracy bounds on each query.

To allow the data analyst to explore data with bounded error,
APEx considers three classes of exploration queries and extend them
to incorporate an accuracy requirement. The syntax for accuracy is
inspired by that in BlinkDB Agarwal et al., 2013:

BIN D ON f(·) WHERE W = {ϕ1, . . . , ϕL}
[HAVING f(·) > c]
[ORDER BY f(·) LIMIT k]
ERROR α CONFIDENCE 1− β ;

Each query is associated with a workload of predicates W = {ϕ1, . . . ,

ϕL}. Based on W , the tuples in a table D are divided into bins. Each
bin bi contains all the tuples in D that satisfy the corresponding pred-
icate ϕi : dom(R) → {0, 1}, i.e., bi = {r ∈ D|ϕ(r) = 1}. More a
query has an aggregation function f : dom(R)∗ → R, which returns a
numeric answer f(bi) for each bin bi. The output of this query with-
out the optional clauses (in square brackets) is a list of counts f(bi)
for bin bi. We denote this class of query workload counting queries
(WCQs).

Each query can be specialized using one of two optional clauses:
The HAVING clause returns a list of bin identifiers bi for which
f(bi) > c; and the ORDER BY ... LIMIT clause returns the k bins
that have the largest values for f(bi). Throughout this section, we
assume f(·) is the COUNT function and omit extensions to other
aggregates like AVG, SUM, QUANTILE due to space constraints.
Queries with the Having clause returns predicates that have counts
more than the threshold are called iceberg counting queries (ICQs).
Queries with the ORDER BY ... LIMIT are called top-k counting queries
(TCQs).

8.2. APEx 193

Each query has its own accuracy specification. For example, the
accuracy requirement for a WCQ qW is defined as a bound on the
maximum error across queries in the workload W .

Definition 8.1 ((α, β)-WCQ accuracy). Given a workload counting query
qW : D → RL, where W = {ϕ1, . . . , ϕL}. Let M : D → RL be a
mechanism that outputs a vector of answers y on D. Then, M satisfies
(α, β)-W accuracy, if ∀D ∈ D,

Pr[∥y − qW (D)∥∞ ≥ α] ≤ β, (8.1)

where ∥y − qW (D)∥∞ = maxj |y[i]− cϕi
(D)|.

APEx has two components. The first component accuracy translator
takes in an analyst query (q, α, β) and chooses a mechanism M that
can (a) answer q under the specified accuracy bounds, with (b) minimal
privacy loss. To achieve both these desiderata, APEx supports a set
of differentially private mechanisms that can be used to answer each
query type. Multiple mechanisms are supported for each query type as
different mechanisms result in the least privacy loss depending on the
query and the dataset.

Each mechanism M exposes two functions: M.translate, which
translates a query and accuracy requirement into a lower and upper
bound (ϵl, ϵu) on the privacy loss if M is executed, and M.run that
runs the differentially private algorithm and returns an approximate
answer ω for the query. ω is guaranteed to satisfy the specified accuracy
requirement. Moreover, M satisfies ϵu differential privacy.

We first introduce one basic translation mechanism in APEx shown
in Algorithm 4. This mechanism is based Laplace mechanism. The
constant ∥W∥1 is equal to the sensitivity of queries set defined by the
workload W. It measures the maximum difference in the answers to the
queries in W on any two databases that differ only a single record and
is equal to the maximum absolute column sum of W.

Algorithm 4 provides the run and translate of Laplace mechanism
for all three query types. This algorithm first transforms the query qW

and the data D into matrix representation W and x. The translate
outputs a lower and upper bound (ϵl, ϵu) for each query type with
a given accuracy requirement and these two bounds are the same as

194 Frameworks for Differentially Private Analysis

Algorithm 4: Laplace Mechanism (LM) (q, α, β,D)
W← T (W = {ϕ1, . . . , ϕL}),x← TW (D), α, β

Function run(q, α, β,D):
ϵ← translate(qW , α, β).ϵu
[x̃1, . . . , x̃L]←Wx + Lap(b)L, where b = ∥W∥1/ϵ
if q.type==WCQ (i.e., qW) then

return ([x̃1, . . . , x̃L], ϵ)
else if q.type==ICQ (i.e., qW,>c) then

return ({ϕi ∈W | x̃i > c}, ϵ)
else if q.type==TCQ (i.e., qW,k) then

return (argmaxk
ϕ1,...,ϕL

x̃i, ϵ)

Function translate(q, α, β):
if q.type==WCQ (i.e., qW) then

return (ϵu = ∥W∥1 ln(1/(1−(1−β)1/L))
α , ϵl = ϵu)

else if q.type==ICQ (i.e., qW,>c) then
return (ϵu = ∥W∥1(ln(1/(1−(1−β)1/L))−ln 2)

α , ϵl = ϵu)
else if q.type==TCQ (i.e., qW,k) then

return (ϵu = ∥W∥12(ln(L/(2β)))
α , ϵl = ϵu)

Laplace mechanism is data independent. However, these bounds vary
among query types. The run takes the privacy budget computed by
translate(q, α, β) (Line 3) and adds the corresponding Laplace noise
[x̃1, . . . , x̃L] to the true workload counts Wx. When q is a WCQ, the
noisy counts are returned directly; when q is an ICQ, the bin ids (the
predicates) that have noisy counts ≥ c are returned; when q is a TCQ,
the bin ids (the predicates) that have the largest k noisy counts are
returned. Beside the noisy output, the privacy budget consumed by this
mechanism is returned as well. The following theorem summarizes the
properties of the two functions run and translate.

Theorem 8.1. Given a query q where q.type ∈ {WCQ, ICQ, TCQ},
Laplace mechanism (Algorithm 4) denoted by M can achieve (α, β)-
q.type accuracy by executing the function run(q, α, β,D) for any D ∈ D,

8.2. APEx 195

and satisfy differential privacy with a minimal cost of translate(q, α, β)
.ϵu.

Note that the privacy translation for Laplace mechanism is not
data dependent, i.e., ϵl = ϵu. Next, we will illustrate a data dependent
translation algorithm with a special case of ICQ when the workload
size L = 1, denoted by qϕ,>c(·). Intuitively, when the true count cϕ(D)
is much larger (or smaller) than the threshold c, then a much larger
(smaller resp.) noise can be added to cϕ(D) without changing the output
of the system.

Example 8.1. Consider a query qϕ,>c, where c = 100. To achieve (α, β)
accuracy for this query, where α = 10, β = 0.110, the Laplace mechanism
requires a privacy cost of ln(1/(2β))

α = 2.23 by Theorem 8.1, regardless
of input D. Suppose cϕ(D) = 1000. In this case, cϕ(D) is much larger
than the threshold c, and the difference is (1000−100)

α = 90 times of the
accuracy bound α = 10. Hence, even when applying Laplace comparison
mechanism with a privacy cost equals to 2.23

90 ≈ 0.25 wherein the noise
added is bounded by 90α with high probability 1−β, the noisy difference
cϕ(D)− c+ ηsign will still be greater than 0 with high probability.

This example shows that a different mechanism can result in the same
accuracy guarantee with a smaller privacy cost compared to Laplace
mechanism. However, the tightening of the privacy cost in the example
above requires to know the true count value. To tackle this challenge,
APEx applies a Multi-Poking Mechanism. This mechanism involves
multiple pokes with improving accuracy requirements (increasing privacy
cost resp.), while each poke checks if bins have either sufficiently large
noisy differences with respect to the accuracy requirement. This allows
the data analyst to learn the query answer with a gradual relaxation
of privacy cost. The privacy loss incurred by such a mechanism may
be ϵ ∈ (ϵl, ϵu) that is smaller than the worst case, depending on the
characteristics of the dataset. Readers can refer to the full paper for
the details.

Hence, the second component of APEx is privacy engine that ensures
the privacy budget B specified by the data owner is not violated. Given
a sequence of queries (M1, . . . ,Mi) already executed by the privacy

196 Frameworks for Differentially Private Analysis

engine that satisfy an overall Bi−1-differential privacy and a new query
(qi, αi, βi), APEx identifies a set of mechanisms M∗ that all will have
a worst case privacy loss smaller than B −Bi−1. That is, running any
mechanism in M∗ will not result in exceeding the privacy budget in
the worst case. If M∗ = ∅, then APEx returns ‘Query Denied’ to
the analyst. Otherwise, APEx runs one of the mechanisms Mi from
M∗ by executing Mi.run() and the output ωi will be returned to
the analyst. APEx then increments Bi−1 by the actual privacy loss
ϵi rather than the upperbound ϵu. As explained above, in some cases
ϵi < ϵu as different execution paths in the mechanism can have different
privacy loss. Nevertheless, the privacy analyzer guarantees that the
execution of any sequence of mechanisms (M1,M2, . . . ,Mi) before it
halts is B-differentially private.

When to use APEx. The accuracy-aware feature proposed by APEx
is important for data analysts to understand the accuracy guarantee of
their query answers without being a DP expert. The current implemen-
tation of APEx involves only a single table, and three classes of queries
for private data exploration. The database systems than handle more
general queries such as PrivateSQL and Flex, only include one DP algo-
rithm for each query, and this algorithm may not necessarily result in
the minimum privacy loss when fixing the accuracy requirement. Hence,
it is recommended to integrate more algorithms and accuracy-aware
features into these end-to-end database systems for DP.

9
Eliminating the Trusted Data Curator

The techniques we have seen so far target the central model of differential
privacy, in which data is collected centrally by a trusted data curator who
runs mechanisms on behalf of the analyst. The central model is unrealis-
tic in many contexts, because the data curator may not be trustworthy.

Such assumptions about who can be trusted are encoded in a threat
model, introduced in Chapter 2. The threat model describes who the
adversary is and what their capabilities are. In the central model of
differential privacy, we assume that the adversary is not capable of
corrupting the data curator.

A significant amount of research investigates approaches that elim-
inate the need for a trusted data curator, and thus result in a threat
model that makes fewer trust assumptions. The local model of differen-
tial privacy is the oldest of these (in fact, randomized response predates
the development of differential privacy itself). More recent developments
include the shuffle model, in which groups of participants have their
responses shuffled for anonymity by a designated shuffler to amplify
the privacy guarantee of the local model, and approaches that leverage
secure computation to simulate a trusted data curator when the data
curator may actually be malicious.

197

198 Eliminating the Trusted Data Curator

F
ig

ur
e

9.
1:

A
rc

hi
te

ct
ur

es
of

fo
ur

m
od

el
s

fo
r

di
ffe

re
nt

ia
lp

riv
ac

y.
In

th
e

ce
nt

ra
lm

od
el

,t
he

da
ta

cu
ra

to
r

is
tr

us
te

d;
th

e
ot

he
r

th
re

e
m

od
el

s
re

du
ce

th
e

tr
us

t
re

qu
ire

d
in

th
e

da
ta

cu
ra

to
r.

9.1. The Local Model 199

Each model results in slightly different trust assumptions, encoded
in its own threat model. If these assumptions hold, then mechanisms in
the model satisfy differential privacy. If they do not, then there is no
guarantee. Figure 9.1 summarizes the architecture differences between
the four models. In this chapter, we provide an overview of the major
known techniques in each of these models. We describe mechanisms for
the local model in Section 9.1, for the shuffle model in Section 9.2, and
for secure computation in Section 9.3.

9.1 The Local Model

In the local model of differential privacy, participants add noise to their
data before submitting it to the data curator. In this setting, the data
curator holds only differentially private data—so the data curator does
not need to be trusted. The local model has obvious and significant
advantages over the central model: the participants’ data is protected
by differential privacy, even if the data curator is untrustworthy or
the central server holding the data is compromised, and no further
security precautions are needed to obtain this guarantee. The threat
model in the local model of differential privacy requires very few trust
assumptions—it allows the adversary to control the data curator and
all data owners except one, and still provides differential privacy.

The primary disadvantage of the local model is that it requires a
lot of noise compared to the central model. For example, the absolute
error introduced by the Laplace mechanism is O(1); the absolute error
of mechanisms in the local model is at least O(

√
n), where n is the

number of participants. For a query whose “signal” grows with O(n),
local differential privacy mechanisms can still provide useful results—
but often require significantly more participants than central-model
approaches to do so.

9.1.1 Randomized Response

The prototypical mechanism for local differential privacy is randomized
response (Warner, 1965), which predates the development of differential
privacy by decades. Randomized response allows the data curator to

200 Eliminating the Trusted Data Curator

collect differentially private responses to a single “yes/no” question,
and was originally developed to aid in collecting survey data about
sensitive topics. A brief description of randomized response was given in
Chapter 2; the full protocol for collecting a single response is as follows:

1. The responder flips a coin. If the result is heads, the responder
answers the question truthfully.

2. Otherwise, the responder flips a second coin. If the second coin’s
result is heads, the responder answers “yes.” Otherwise, the re-
sponder answers “no.”

The privacy in this protocol comes from the second case—in which
the responder answers randomly—and the fact that the interviewer
does not know which case was chosen.

9.1.2 Histogram Queries

Randomized response is suitable for answering a single counting query,
but not for more complicated queries. A number of different mechanisms
have been developed to answer histogram queries; many of these can be
thought of as instances of framework with three steps: encode, perturb,
and aggregate (Wang et al., 2017). One example is unary encoding,
which works for a histogram query over a domain d of options. The
approach has two parameters, p and q, that control the strength of the
privacy guarantee.

1. Encode: For a response v ∈ d, generate a one-hot encoding B of
v as a length-|d| binary vector with all elements 0 except for the
one corresponding to v.

2. Perturb: Generate the perturbed encoding B′ by flipping bits of
B according to the following probability distribution:

Pr[B′[i] = 1] =
{
p if B[i] = 1
q if B[i] = 0

9.1. The Local Model 201

3. Aggregate: After collecting n responses, generate the vector of
approximate counts A for each element of d as follows:

A[i] =
∑

j B
′
j [i]− nq
p− q

Theorem 9.1 (Privacy for Unary Encoding (Wang et al., 2017)). For
parameters p and q, the unary encoding approach satisfies ϵ-local differ-
ential privacy for:

ϵ = log
(p(1− q)

(1− p)q
)

The unary encoding approach is similar to the solution of RAPPOR
(Erlingsson et al., 2014). The same authors formalize several more
complex techniques that yield improvements in accuracy (Wang et al.,
2017), but all of them result in O(

√
n) error.

9.1.3 More Complex Queries

Due to the challenges of the model, the majority the work in local
differential privacy has focused on single queries or specific sets of
queries (like histograms).

Recent work has resulted in more general mechanisms for releasing
higher-dimensional results with local differential privacy. The CALM
technique (Zhang et al., 2018) releases differentially private marginals
in the local model; the HIO (Wang et al., 2019) approach extends this
idea to analytical queries over many attributes, and HDG (Yang et al.,
2020) further extends the approach to range queries.

To answer workloads of linear queries, a workload factorization
mechanism (McKenna et al., 2020) can be used. This approach extends
ideas from the matrix mechanism in the central model (described in
Section 4.2) to the local model, and is capable of generating optimized
mechanisms for answering specific workloads. The authors have shown
that existing mechanisms in the local model can be viewed as specific
strategies described using their workload factorization approach.

202 Eliminating the Trusted Data Curator

9.2 The Shuffle Model

The shuffle model (Bittau et al., 2017; Erlingsson et al., 2019) is a
compromise between the local and central models that retains some of
the benefits of both. The shuffle model works by using several shufflers
to ensure anonymity of data owners before the data reaches the data
curator.

Anonymous communication channels (Chaum, 1981) enable a user
to remain unidentifiable from a set of other users (called the anonymity
set). Examples of such systems include Mixnets, which use proxies to
mix communications from various users. The key insight of the shuffle
model is that anonymous communication results in a kind of privacy
amplification (Kasiviswanathan et al., 2011; Balle et al., 2018).

In the shuffle model, data owners submit randomized data to a
shuffler (i.e. data owners add noise to their data before it leaves their
device—just as in local differential privacy). This randomization process
is similar to the encode and perturb steps in Section 9.1 for local model.
Once it has received data from at least n data owners, the shuffler
“anonymizes” the batch of n data records by removing identifying in-
formation and metadata and shuffling the records. Then, the shuffler
submits the entire batch of n records to the data curator. This process
makes it impossible for the data curator to link any single record to its
owner, except using the data contained in the record itself (i.e. it creates
an anonymous communication channel). The records will be aggregated
in a similar way as the aggregate step in Section 9.1 for local model.

Like local differential privacy, the shuffle model derives its privacy
guarantee by asking data owners themselves to add noise to their data.
However, the anonymous communication channel amplifies the resulting
privacy guarantee—so data owners can add less noise to their data
before submitting it. As first implemented in the Prochlo system (Bittau
et al., 2017; Erlingsson et al., 2019), the approach outlined above reduces
error from O(

√
n) (in LDP) to O(log(n)).

Threat model. The shuffle model requires slightly different trust
assumptions than the local model. As in local differential privacy, the
data curator does not need to be trusted. However, the newly-introduced

9.3. Leveraging Secure Computation 203

shuffler must be trusted—if the adversary corrupts the shuffler and
breaks the intended anonymity property, then no privacy amplification
is achieved by the shuffling process.

The need to trust the shuffler can be addressed in several ways. First,
multiple shufflers can be used, which effectively distributes trust among
them. To be sure of intercepting a target record, an adversary would
need to corrupt all of the shufflers. Second, other techniques for secure
computation can be used to ensure that shufflers are not corrupted; for
example, Prochlo implements the shuffling step using trusted hardware
to eliminate the need for a trusted shuffler.

Further reducing error. The shuffle model of differential privacy repre-
sents an active area of research. Recent work has clarified the limits of
the shuffle model and brought it closer to the central model in terms of
accuracy. For example, we now know that there are some mechanisms
in the central model that do not have shuffle-model analogues with
the same error. In particular, anonymous communication with a single
message per data owner cannot yield expected error less than O(N1/6)
(Balle et al., 2019). On the other hand, for some types of analysis, the
shuffle model produces the same error as the central model: with a
constant number of messages per data owner, it is possible to reduce
the error for real-valued DP summation in the shuffle model to O(1)
(Ghazi et al., 2020; Balle et al., 2020).

9.3 Leveraging Secure Computation

A third approach for reducing trust assumptions while maintaining the
low error of the central model is to employ techniques from cryptography
for secure computation. Specifically, homomorphic encryption (HE) and
secure multiparty computation (MPC) techniques can eliminate the
central model’s need for a trusted data curator (Dwork et al., 2006a;
Narayan and Haeberlen, 2012; Bater et al., 2017; Agarwal et al., 2018;
Roth et al., 2019). Generally speaking, these techniques allow a group
of participants to compute some function of shared data, revealing only
the function’s output—even in the absence of a trusted third party.

204 Eliminating the Trusted Data Curator

Secure computation techniques are naturally complementary to
differential privacy. These techniques ensure that all parties learn only
the output of the computation (and nothing else), while differential
privacy bounds the information leakage of the output itself. Secure
computation controls who gets to learn each input and output (a security
property), while differential privacy controls what can be learned from
that output (a privacy property).

Combining the two allows us to simulate the trusted data curator
required in the central model, even if no trusted data curator is available.
Secure computation techniques therefore directly enable the use of low-
error central model mechanisms (i.e. O(1) error) while relaxing the trust
assumptions of the central model.

Example: DJoin. Consider a simple setting where two parties would
like to compute the intersection size of their data while preserving
differential privacy for both datasets. If each party does not trust each
other, how can we ensure a constant additive error as if they trust
each other? It is well known that the lower bound for this query is√
N , where N is the data size of each party (McGregor et al., 2010), if

we want to ensure the view of each party satisfies differential privacy.
However, if we assume both parties are computationally bounded, a
constant additive error can be achieved.

DJoin (Narayan and Haeberlen, 2012) offers a concrete protocol for
achieving differential privacy under this assumption. This protocol ap-
plies private set-intersection cardinality technique to privately compute
the noisy intersection set of the two datasets. First, party A defines a
polynomial over a finite field whose roots are the elements owned by
A. Party A then sends the homomorphic encryptions of the coefficients
to party B, along with its public key. Then the encrypted polynomial
is evaluated at each of Party B’s inputs, followed by a multiplication
with a fresh random number. The number of zeros in the results is the
true intersection size between A and B. To provide differential privacy,
party B adds a number of zeros (differentially-private noise of O(1)
independent of data size) to the results and sends the randomly per-
muted results back to party A. Party A decrypts the results and counts
the number of zeros. Party A also adds another copy of differentially

9.3. Leveraging Secure Computation 205

private noise to the count and sends the result it back to party B. In
other words, both parties add noise to their inputs to achieve privacy.
However, the final protocol output has only an error of O(1), which is
the same as the corresponding central model approach.

Limitations & open problems. Using secure computation and encryp-
tion achieves the same error as the central model and prevents any party
from seeing the other party’s input in the clear. However, this requires an
additional assumption of all parties being computationally bounded in
the protocol. Hence, the type of differential privacy guarantee achieved
in DJoin is known as computational differential privacy (Mironov et al.,
2009). In addition, most of the existing protocols consider honest-but-
curious adversaries who follow the protocol specification or consider
malicious adversaries with an additional overhead to enforce honest
behaviour i.e., verify that the computation was performed correctly.

10
Implementation Issues & Open Challenges

We conclude with a survey of issues specific to implementations of
differentially private algorithms, and a discussion of open challenges not
covered in earlier in earlier Chapters. Differential privacy has already
enjoyed significant success; many of the open challenges in differential
privacy are related to developing techniques for new kinds of data (e.g.
unstructured or streaming data), setting the privacy budget, communi-
cating with non-experts about the privacy guarantee, and supporting
analysts in applying differentially private algorithms.

10.1 Privacy Definitions & Algorithm Design

The work we have covered in this book is largely focused on the setting of
tabular data stored in a database, in which each individual contributes
a single row of data. The definition of neighboring databases given
in Chapter 2 formalizes this notion, and that definition is common in
research on differential privacy.

The definition of differential privacy also applies in other contexts,
but each of these requires a new definition of neighboring databases.
Finding a good formal distance metric for databases can be surprisingly
challenging; the definition should reflect the informal notion that neigh-

206

10.1. Privacy Definitions & Algorithm Design 207

boring databases differ in one person’s data—which can be very difficult
to define formally. This section briefly summarizes the challenges as-
sociated with particular forms of data and some of the work that has
been done in these areas.

Multi-relational data. Chapter 7 describes the challenges of answering
queries over multi-relational databases with differential privacy. This
setting presents two major challenges: the high or unbounded sensitivity
of the queries involved, and the ability to express policies that constrain
the structure of the database itself. Most of the existing research has
focused on the first challenge; PrivateSQL (Kotsogiannis et al., 2019) is
the only approach we cover that addresses the second.

The question of which databases are neighbors is at the core of this
second challenge, and answering this question definitively remains a
serious challenge (as demonstrated by the example at the beginning
of Chapter 7). An incorrect answer to this question may result in
insufficient privacy protection, even though the formal privacy property
holds.

Growing Databases & Streaming Data. The vast majority of the
work in differential privacy for databases has assumed that the data is
fixed and does not change over time. In practice, however, databases do
change over time—often continuously. This presents both challenges and
opportunities for differential privacy, many of which remain unexplored.

The privacy parameter ϵ is often considered a global privacy “bud-
get,” but in the growing database setting, a single global budget is a
pessimistic over-estimate of the privacy risk to some participants—in
particular, newly added data has never been queried, so its owners are
not subject to any privacy risk at all! Several approaches aim to take
advantage of this fact by tracking privacy budget with finer granularity
as data is added to the database (e.g. Ebadi et al., 2015; Cummings
et al., 2018). Such approaches may prove necessary to address the com-
mon concern that in practical deployments of differential privacy for
database queries, the privacy budget will be quickly exhausted.

Streaming data presents similar challenges to growing databases;
in addition, streaming data often involves multiple data contributions

208 Implementation Issues & Open Challenges

by a single user. A number of approaches have been developed for
releasing differentially private statistics about streaming data (e.g. Chan
et al., 2010; Chen et al., 2017). The definition of neighboring databases
(or neighboring streams, in this setting) is a key part of the problem
definition for this area. Many approaches consider a kind of sliding-
window for privacy: they assume that two neighboring streams will
differ only in a bounded number of events within a particular window,
and will be identical otherwise. Whether or not this kind of definition
provides sufficient privacy for streaming data in practice is an open
question. A stricter definition—for example, one in which neighboring
streams may differ arbitrarily in one individual’s contributions—tends
to result in statistics with too much noise to be usable.

Correlated Data. The implicit assumption of the “standard” definition
of neighboring databases is that rows are independent—knowing that
row A is present in the database does not imply new knowledge about
whether or not row B is present. Violating this assumption does not
“break” differential privacy—the mathematical property still holds, either
way—but it might result in surprising real-world outcomes (e.g. weaker
privacy protection than expected for row B above).

Addressing this situation requires modifying the definition of differen-
tial privacy to take correlations into account, and add extra noise when
correlations allow the adversary to make additional inferences about
the sensitive data. The Pufferfish framework (Kifer and Machanava-
jjhala, 2014) was designed specifically for building such modifications;
Pufferfish privacy allows for the specification of a set of data-generating
distributions (which may encode correlations in the data) and sets of
secrets that the privacy definition should protect. Pufferfish privacy
ensures that these secrets receive the desired level of privacy protec-
tion for every distribution of databases in the specified set (even when
correlated data is present).

Instances of Pufferfish privacy are challenging to construct and
reason about, because formal descriptions of both the set of secrets and
distributions over databases are less intuitive than the broad guarantee
provided by differential privacy. Domain-specific privacy definitions,
grounded in the Pufferfish framework, may offer a promising path

10.2. System Implementation & Integration 209

towards addressing this challenge; such definitions can be specifically
designed to match the informal expectations of privacy for a particular
setting. This approach has been successfully applied to social networks
(Liu et al., 2016) and streaming data (Song et al., 2017).

10.2 System Implementation & Integration

The theory of differential privacy is being translated into practical
systems for its deployment at an accelerating rate, and this process has
uncovered a number of interesting challenges specific to the practical
implementation of differentially private mechanisms. We summarize
some of these challenges here, in addition to the ones mentioned in
Chapters 7, 8, and 9.

Floating-point arithmetic and random number generators. The
mathematical definitions of differential privacy mechanisms described
in this book assume that generating high-quality random samples from
a specific distribution is easy, and that arithmetic is exact—but in
actual implementations, neither assumption holds. In fact, the textbook
method for generating Laplace noise using standard floating-point arith-
metic fails to satisfy differential privacy (Mironov, 2012). Solutions to
this problem have been developed and implemented in most popular
libraries for differential privacy. In addition, high-quality (cryptographic)
random number generators should ideally be used to generate the uni-
form randomness used in differentially private algorithms; for example,
Garfinkel and Leclerc (Garfinkel and Leclerc, 2020) sketch a poten-
tial attack against noise generated using the MT19937 pseudo-random
number generator (Python’s default).

Hyperparameters. Many differentially private algorithms (including
the ones described in this book) expose hyperparameters to the analyst,
and require these to be set properly in order to achieve good results.
However, analysts typically have no experience with these hyperparam-
eters, and no idea how to set them—in fact, for some algorithms, good
settings are unknown. The idea of clipping, described in Section 6.5 and
used in many truncation-based algorithms, is a good example—if the

210 Implementation Issues & Open Challenges

clipping parameter is set too low, then accuracy suffers because of lost
data; if it is set too high, then accuracy suffers because more noise is
added than necessary.

As these algorithms are transferred into deployable systems for
differential privacy, free hyperparameters become a challenge. Many
recent algorithms include methods for setting hyperparameters auto-
matically or adaptively; for example, the recent TSens algorithm (Tao
et al., 2020) is truncation-based, but uses the Sparse Vector Technique
(Chapter 2) to set the truncation parameter automatically. Eliminating
hyperparameters entirely is difficult. But as differential privacy gains
widespread use, approaches like this one are likely to become more
common, since they make algorithms much easier to use.

Privacy budgeting. Two open challenges in privacy budgeting for
differential privacy remain: how to set the privacy budget (discussed in
the next section) and how to remain below it. The latter challenge is
often a particular concern when deploying differentially private solutions,
since when the budget is used up, the data must be thrown away! Almost
by definition, then, the goal of differentially private algorithm design is
to answer more queries with less budget, and stretch the budget out.
Even with these techniques, however, it seems almost inevitable that
the privacy budget for a dataset will eventually be used up.

As a result, deployments of differential privacy have been primarily
focused on discrete releases of data—like the statistics released by the
US Census Bureau (Abowd, 2018). Systems designed for differentially
private analysis of data often use simplistic methods to account for the
budget used over time, and our lack of experience with these tools means
we do not yet know how best to set them up to ensure appropriate use
of the budget. Progress on the problem of privacy budgeting is therefore
likely to require close collaboration between algorithm designers, system
builders, and practitioners.

10.3 Social Considerations

This book primarily addresses the technical challenges of differential
privacy, and ignores the social impacts and considerations that go with

10.3. Social Considerations 211

it. These aspects deserve careful consideration, however, and many of
the open challenges in adopting differential privacy lie in understanding
the real-world implications of the privacy guarantee and explaining
those implications to non-experts. We briefly survey some of these
considerations in this section.

Understanding the privacy guarantee. As described in Chapter 1,
one way to interpret the guarantee of differential privacy is: if you
participate in a differentially private analysis of data, you will not
suffer any additional harm as a result. This interpretation is both a
strength and a challenge associated with differential privacy; it does
not require any understanding of the format of the underlying data or
correlations between data samples, but it remains challenging to explain
the role of the privacy parameter ϵ or the effect of correlations in the
data on the outcomes of differentially private analysis in practice.

In industrial deployments, differential privacy is often described
as “magical math” that protects privacy “better” than traditional
approaches. Progressing beyond this simple description, towards a real
understanding of the benefits and challenges of differential privacy
among the general public, remains a major challenge. Understanding
the nuances of the definition of differential privacy, and of the differences
between formal definitions (e.g. pure versus approximate differential
privacy), adds to this challenge; more complicated definitions (e.g.
Pufferfish privacy) further complicate the process.

Setting and communicating the privacy budget. Setting ϵ remains
a big challenge. Values between 0.1 and 1.0 are often considered rea-
sonable (Dwork, 2011); because for ϵ≫ 1, the probability of harm to
an individual increases quickly. It does seem clear that setting ϵ ≤ 1
is likely to do a good job protecting privacy in most settings, but it
remains unclear how much larger ϵ can be before practical harms occur.
For example, Apple’s differential privacy system has used values for ϵ
as high as 16 (Tang et al., 2017), but no practical privacy attack has
ever been demonstrated against the system.

The effect of the privacy parameter on real-world privacy outcomes
is still an open question, and no clear guidance exists on how to set

212 Implementation Issues & Open Challenges

the privacy parameter for a given use case. One approach is a kind
of “ϵ marketplace” (Dwork, 2011): data curators will compete to offer
the lowest ϵ for a given analysis task, and acceptable values of ϵ will
naturally fall over time to reach a minimum. Another approach is to
allow analysts to specify a desired level of accuracy, and automatically
set ϵ to the minimum possible value which yields the desired accuracy
(e.g. Hsu et al., 2014; Lee and Clifton, 2011). Frameworks like APEx
(Ge et al., 2019) have been developed to help analysts in this task.

Communicating the implication of a particular setting of ϵ poses
an additional challenge. The “meaning” of ϵ is similar to the “meaning”
of the security parameter in a cryptosystem—both are difficult to
interpret without deep technical knowledge of the underlying theory.
In cryptography, the solution is to ask experts to define “reasonable
defaults” for the rest of us to use; the analogous defaults (e.g. values
for ϵ) have yet to be developed in differential privacy.

Supporting analysts. Analysts are often not experts in differential
privacy, but the properties of differentially private algorithms can have
significant impact on the quality of the results they compute. Future
systems for differentially private analysis will need to support analysts in
making decisions about the privacy budget and other hyperparameters
(as described above), and also about which analyses are reasonable to
conduct and how the results should be interpreted (e.g. how to deal
with noisy results). Systems like PSI (Murtagh et al., 2018) and APEx
(Ge et al., 2019) hint at the future of support for analysts. Both provide
tools that help the analyst decide what queries to run, how to run them,
and how much of the privacy budget to allocate to each one.

Differential privacy and the law. In response to the rapid loss of
data privacy over the past decade, governments have begun developing
new privacy regulations (e.g. the General Data Protection Regulation
(GDPR) in the European Union). These regulations recognize the im-
portance of privacy and attempt to specify how it must be protected.

Where does differential privacy fit in the new world of regulated
privacy? Unfortunately, it depends on your interpretation of the law.

10.3. Social Considerations 213

Regulations like GDPR do not specifically require the use of differential
privacy, or any specific privacy definition—and perhaps they should
not, in case problems are found in the definition, or a better definition
is developed. However, differential privacy is increasingly viewed by
organizations as an important tool for complying with regulations
like GDPR, and regulators are increasingly aware of the drawbacks of
traditional approaches to privacy (Ohm, 2009). In the future, differential
privacy may play a larger role both in efforts to comply with existing
regulation and in influencing new regulation.

References

Abadi, M., A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K.
Talwar, and L. Zhang. (2016). “Deep learning with differential
privacy”. In: Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security. ACM. 308–318.

Abowd, J. M. (2018). “The US Census Bureau adopts differential
privacy”. In: Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. 2867–2867.

Agarwal, A., M. Herlihy, S. Kamara, and T. Moataz. (2018). “Encrypted
Databases for Differential Privacy”. In: IACR Cryptology ePrint
Archive.

Agarwal, S., B. Mozafari, A. Panda, H. Milner, S. Madden, and I. Sto-
ica. (2013). “BlinkDB: Queries with Bounded Errors and Bounded
Response Times on Very Large Data”. In: EuroSys.

Arapinis, M., D. Figueira, and M. Gaboardi. (2016). “Sensitivity of
Counting Queries”. In: ICALP. 120:1–120:13.

Balle, B., G. Barthe, and M. Gaboardi. (2018). “Privacy Amplification
by Subsampling: Tight Analyses via Couplings and Divergences”.
In: Advances in Neural Information Processing Systems 31. Ed.
by S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett. Curran Associates, Inc. 6277–6287. url:
http : //papers . nips . cc/paper/7865 - privacy - amplification - by -
subsampling-tight-analyses-via-couplings-and-divergences.pdf.

214

http://papers.nips.cc/paper/7865-privacy-amplification-by-subsampling-tight-analyses-via-couplings-and-divergences.pdf
http://papers.nips.cc/paper/7865-privacy-amplification-by-subsampling-tight-analyses-via-couplings-and-divergences.pdf

References 215

Balle, B., J. Bell, A. Gascon, and K. Nissim. (2020). “Private
summation in the multi-message shuffle model”. arXiv preprint
arXiv:2002.00817.

Balle, B., J. Bell, A. Gascón, and K. Nissim. (2019). “The privacy
blanket of the shuffle model”. In: Annual International Cryptology
Conference. Springer. 638–667.

Barthe, G., G. P. Farina, M. Gaboardi, E. J. G. Arias, A. Gordon, J. Hsu,
and P. Strub. (2016). “Differentially Private Bayesian Programming”.
In: Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, Vienna, Austria, October 24-28, 2016.
Ed. by E. R. Weippl, S. Katzenbeisser, C. Kruegel, A. C. Myers,
and S. Halevi. ACM. 68–79. doi: 10.1145/2976749.2978371.

Bater, J., G. Elliott, C. Eggen, S. Goel, A. Kho, and J. Rogers. (2017).
“SMCQL: Secure Querying for Federated Databases”. pvldb. 10(6):
673–684. doi: 10.14778/3055330.3055334.

Bittau, A., Ú. Erlingsson, P. Maniatis, I. Mironov, A. Raghunathan,
D. Lie, M. Rudominer, U. Kode, J. Tinnés, and B. Seefeld. (2017).
“Prochlo: Strong Privacy for Analytics in the Crowd”. In: Proceedings
of the 26th Symposium on Operating Systems Principles, Shanghai,
China, October 28-31, 2017. 441–459.

Blocki, J., A. Blum, A. Datta, and O. Sheffet. (2013). “Differentially
private data analysis of social networks via restricted sensitivity”. In:
Innovations in Theoretical Computer Science, ITCS ’13, Berkeley,
CA, USA, January 9-12, 2013. Ed. by R. D. Kleinberg. ACM. 87–96.
doi: 10.1145/2422436.2422449.

Bun, M., C. Dwork, G. N. Rothblum, and T. Steinke. (2018). “Compos-
able and versatile privacy via truncated CDP”. In: Proceedings of the
50th Annual ACM SIGACT Symposium on Theory of Computing.
ACM. 74–86.

Bun, M. and T. Steinke. (2016). “Concentrated differential privacy:
Simplifications, extensions, and lower bounds”. In: Theory of Cryp-
tography Conference. Springer. 635–658.

Chan, T. H., E. Shi, and D. Song. (2010). “Private and continual release
of statistics”. In: International Colloquium on Automata, Languages,
and Programming. Springer. 405–417.

https://doi.org/10.1145/2976749.2978371
https://doi.org/10.14778/3055330.3055334
https://doi.org/10.1145/2422436.2422449

216 References

Chatzikokolakis, K., M. E. Andrés, N. E. Bordenabe, and C. Palamidessi.
(2013). “Broadening the Scope of Differential Privacy Using Metrics”.
In: Privacy Enhancing Technologies - 13th International Symposium,
PETS 2013, Bloomington, IN, USA, July 10-12, 2013. Proceedings.
Ed. by E. D. Cristofaro and M. K. Wright. Vol. 7981. Lecture Notes
in Computer Science. Springer. 82–102. doi: 10.1007/978-3-642-
39077-7_5.

Chaum, D. L. (1981). “Untraceable Electronic Mail, Return Addresses,
and Digital Pseudonyms”. Commun. ACM. 24(2): 84–90. doi: 10.
1145/358549.358563.

Chen, S. and S. Zhou. (2013). “Recursive Mechanism: Towards Node
Differential Privacy and Unrestricted Joins”. In: ACM SIGMOD.

Chen, Y., A. Machanavajjhala, M. Hay, and G. Miklau. (2017). “Pe-
gasus: Data-adaptive differentially private stream processing”. In:
Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security. 1375–1388.

Cummings, R., S. Krehbiel, K. A. Lai, and U. T. Tantipongpipat. (2018).
“Differential Privacy for Growing Databases”. In: Advances in Neural
Information Processing Systems 31: Annual Conference on Neural
Information Processing Systems 2018, NeurIPS 2018, December
3-8, 2018, Montréal, Canada. Ed. by S. Bengio, H. M. Wallach, H.
Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett. 8878–
8887. url: https ://proceedings .neurips .cc/paper/2018/hash/
ac27b77292582bc293a51055bfc994ee-Abstract.html.

Dinur, I. and K. Nissim. (2003). “Revealing information while preserv-
ing privacy”. In: Proceedings of the twenty-second ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database systems.
202–210.

Dwork, C. (2006). “Differential Privacy”. In: 33rd International Collo-
quium on Automata, Languages and Programming, part II (ICALP
2006). Vol. 4052. Lecture Notes in Computer Science. Springer Ver-
lag. 1–12. url: https : //www.microsoft . com/en - us/ research/
publication/differential-privacy/.

Dwork, C. (2011). “A firm foundation for private data analysis”. Com-
mun. ACM. 54(1): 86–95. doi: 10.1145/1866739.1866758.

https://doi.org/10.1007/978-3-642-39077-7_5
https://doi.org/10.1007/978-3-642-39077-7_5
https://doi.org/10.1145/358549.358563
https://doi.org/10.1145/358549.358563
https://proceedings.neurips.cc/paper/2018/hash/ac27b77292582bc293a51055bfc994ee-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/ac27b77292582bc293a51055bfc994ee-Abstract.html
https://www.microsoft.com/en-us/research/publication/differential-privacy/
https://www.microsoft.com/en-us/research/publication/differential-privacy/
https://doi.org/10.1145/1866739.1866758

References 217

Dwork, C., K. Kenthapadi, F. McSherry, I. Mironov, and M. Naor.
(2006a). “Our Data, Ourselves: Privacy Via Distributed Noise Gen-
eration.” In: EUROCRYPT. Ed. by S. Vaudenay. Vol. 4004. Lec-
ture Notes in Computer Science. Springer. 486–503. url: http :
//dblp.uni- trier .de/db/conf/eurocrypt/eurocrypt2006.html#
DworkKMMN06.

Dwork, C. and J. Lei. (2009). “Differential privacy and robust statistics”.
In: Proceedings of the 41st Annual ACM Symposium on Theory of
Computing, STOC 2009, Bethesda, MD, USA, May 31 - June 2,
2009. Ed. by M. Mitzenmacher. ACM. 371–380. doi: 10 . 1145 /
1536414.1536466.

Dwork, C., F. McSherry, K. Nissim, and A. Smith. (2006b). “Calibrat-
ing Noise to Sensitivity in Private Data Analysis”. In: Theory of
Cryptography. Ed. by S. Halevi and T. Rabin. Berlin, Heidelberg:
Springer Berlin Heidelberg. 265–284.

Dwork, C., M. Naor, T. Pitassi, and G. N. Rothblum. (2010). “Differen-
tial Privacy Under Continual Observation”. In: Proceedings of the
Forty-second ACM Symposium on Theory of Computing. STOC ’10.

Dwork, C., M. Naor, O. Reingold, G. N. Rothblum, and S. Vadhan.
(2009). “On the Complexity of Differentially Private Data Release:
Efficient Algorithms and Hardness Results”. In: Proceedings of
the Forty-First Annual ACM Symposium on Theory of Comput-
ing. STOC ’09. Bethesda, MD, USA: Association for Computing
Machinery. 381–390. doi: 10.1145/1536414.1536467.

Dwork, C., A. Roth, et al. (2014). “The algorithmic foundations of dif-
ferential privacy.” Foundations and Trends in Theoretical Computer
Science. 9(3-4): 211–407.

Ebadi, H., D. Sands, and G. Schneider. (2015). “Differential Privacy:
Now it’s Getting Personal”. In: Proceedings of the 42nd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2015, Mumbai, India, January 15-17, 2015. Ed.
by S. K. Rajamani and D. Walker. ACM. 69–81. doi: 10.1145/
2676726.2677005.

http://dblp.uni-trier.de/db/conf/eurocrypt/eurocrypt2006.html#DworkKMMN06
http://dblp.uni-trier.de/db/conf/eurocrypt/eurocrypt2006.html#DworkKMMN06
http://dblp.uni-trier.de/db/conf/eurocrypt/eurocrypt2006.html#DworkKMMN06
https://doi.org/10.1145/1536414.1536466
https://doi.org/10.1145/1536414.1536466
https://doi.org/10.1145/1536414.1536467
https://doi.org/10.1145/2676726.2677005
https://doi.org/10.1145/2676726.2677005

218 References

Erlingsson, Ú., V. Feldman, I. Mironov, A. Raghunathan, K. Talwar,
and A. Thakurta. (2019). “Amplification by Shuffling: From Local
to Central Differential Privacy via Anonymity”. Annual ACM-SIAM
Symposium on Discrete Algorithms: 2468–2479.

Erlingsson, Ú., V. Pihur, and A. Korolova. (2014). “RAPPOR: Ran-
domized Aggregatable Privacy-Preserving Ordinal Response”. In:
Proceedings of the 2014 ACM SIGSAC Conference on Computer
and Communications Security, Scottsdale, AZ, USA, November 3-7,
2014. 1054–1067. doi: 10.1145/2660267.2660348.

Gaboardi, M., E. J. G. Arias, J. Hsu, A. Roth, and Z. S. Wu. (2014).
“Dual query: Practical private query release for high dimensional
data”. In: International Conference on Machine Learning. 1170–
1178.

Garfinkel, S. L. and P. Leclerc. (2020). “Randomness Concerns when
Deploying Differential Privacy”. In: WPES’20: Proceedings of the
19th Workshop on Privacy in the Electronic Society, Virtual Event,
USA, November 9, 2020. Ed. by J. Ligatti, X. Ou, W. Lueks, and
P. Syverson. ACM. 73–86. doi: 10.1145/3411497.3420211.

Ge, C., X. He, I. F. Ilyas, and A. Machanavajjhala. (2019). “APEx:
Accuracy-Aware Differentially Private Data Exploration”. In: Pro-
ceedings of the 2019 International Conference on Management of
Data, SIGMOD Conference 2019, Amsterdam, The Netherlands,
June 30 - July 5, 2019. Ed. by P. A. Boncz, S. Manegold, A. Aila-
maki, A. Deshpande, and T. Kraska. ACM. 177–194.

Ghazi, B., P. Manurangsi, R. Pagh, and A. Velingker. (2020). “Private
aggregation from fewer anonymous messages”. In: Annual Interna-
tional Conference on the Theory and Applications of Cryptographic
Techniques. Springer. 798–827.

Haeberlen, A., B. C. Pierce, and A. Narayan. (2011). “Differential
Privacy Under Fire”. In: 20th USENIX Security Symposium, San
Francisco, CA, USA, August 8-12, 2011, Proceedings. USENIX
Association. url: http://static.usenix.org/events/sec11/tech/full%
5C_papers/Haeberlen.pdf.

Hardt, M., K. Ligett, and F. McSherry. (2012). “A simple and practical
algorithm for differentially private data release”. In: Advances in
Neural Information Processing Systems. 2339–2347.

https://doi.org/10.1145/2660267.2660348
https://doi.org/10.1145/3411497.3420211
http://static.usenix.org/events/sec11/tech/full%5C_papers/Haeberlen.pdf
http://static.usenix.org/events/sec11/tech/full%5C_papers/Haeberlen.pdf

References 219

Hay, M., A. Machanavajjhala, G. Miklau, Y. Chen, and D. Zhang.
(2016a). “Principled evaluation of differentially private algorithms
using dpbench”. In: Proceedings of the 2016 International Conference
on Management of Data. 139–154.

Hay, M., A. Machanavajjhala, G. Miklau, Y. Chen, D. Zhang, and
G. Bissias. (2016b). “Exploring Privacy-Accuracy Tradeoffs using
DPComp”. In: Proceedings of the 2016 International Conference on
Management of Data, SIGMOD Conference 2016, San Francisco,
CA, USA, June 26 - July 01, 2016. Ed. by F. Özcan, G. Koutrika,
and S. Madden. ACM. 2101–2104. doi: 10.1145/2882903.2899387.

He, X., A. Machanavajjhala, and B. Ding. (2014). “Blowfish privacy:
tuning privacy-utility trade-offs using policies”. In: International
Conference on Management of Data, SIGMOD 2014, Snowbird, UT,
USA, June 22-27, 2014. Ed. by C. E. Dyreson, F. Li, and M. T.
Özsu. ACM. 1447–1458. doi: 10.1145/2588555.2588581.

Hsu, J., M. Gaboardi, A. Haeberlen, S. Khanna, A. Narayan, B. C.
Pierce, and A. Roth. (2014). “Differential Privacy: An Economic
Method for Choosing Epsilon”. In: IEEE 27th Computer Security
Foundations Symposium, CSF 2014, Vienna, Austria, 19-22 July,
2014. IEEE Computer Society. 398–410. doi: 10.1109/CSF.2014.35.

“IBM Differential Privacy Library”. https : / / github . com / IBM /
differential-privacy-library.

Ilvento, C. (2020). “Implementing the Exponential Mechanism with
Base-2 Differential Privacy”. In: CCS ’20: 2020 ACM SIGSAC
Conference on Computer and Communications Security, Virtual
Event, USA, November 9-13, 2020. Ed. by J. Ligatti, X. Ou, J. Katz,
and G. Vigna.

Johnson, N. M., J. P. Near, J. M. Hellerstein, and D. Song. (2020). “Cho-
rus: a Programming Framework for Building Scalable Differential
Privacy Mechanisms”. In: IEEE European Symposium on Security
and Privacy, EuroS&P 2020, Genoa, Italy, September 7-11, 2020.
IEEE. 535–551. doi: 10.1109/EuroSP48549.2020.00041.

Johnson, N. M., J. P. Near, and D. Song. (2018). “Towards Practical
Differential Privacy for SQL Queries”. Proc. VLDB Endow. 11(5):
526–539. doi: 10.1145/3187009.3177733.

https://doi.org/10.1145/2882903.2899387
https://doi.org/10.1145/2588555.2588581
https://doi.org/10.1109/CSF.2014.35
https://github.com/IBM/differential-privacy-library
https://github.com/IBM/differential-privacy-library
https://doi.org/10.1109/EuroSP48549.2020.00041
https://doi.org/10.1145/3187009.3177733

220 References

Karwa, V., S. Raskhodnikova, A. Smith, and G. Yaroslavtsev. (2011).
“Private Analysis of Graph Structure”. In: PVLDB.

Kasiviswanathan, S. P., H. K. Lee, K. Nissim, S. Raskhodnikova, and
A. D. Smith. (2011). “What Can We Learn Privately?” SIAM J.
Comput. 40(3): 793–826. doi: 10.1137/090756090.

Kasiviswanathan, S. P., K. Nissim, S. Raskhodnikova, and A. D. Smith.
(2013). “Analyzing Graphs with Node Differential Privacy”. In:
Theory of Cryptography - 10th Theory of Cryptography Conference,
TCC 2013, Tokyo, Japan, March 3-6, 2013. Proceedings. Ed. by
A. Sahai. Vol. 7785. Lecture Notes in Computer Science. Springer.
457–476. doi: 10.1007/978-3-642-36594-2_26.

Kifer, D. and A. Machanavajjhala. (2014). “Pufferfish: A framework
for mathematical privacy definitions”. ACM Trans. Database Syst.
39(1): 3:1–3:36. doi: 10.1145/2514689.

Korolova, A., K. Kenthapadi, N. Mishra, and A. Ntoulas. (2009). “Releas-
ing search queries and clicks privately”. In: Proceedings of the 18th
International Conference on World Wide Web, WWW 2009, Madrid,
Spain, April 20-24, 2009. Ed. by J. Quemada, G. León, Y. S. Maarek,
and W. Nejdl. ACM. 171–180. doi: 10.1145/1526709.1526733.

Kotsogiannis, I., Y. Tao, X. He, M. Fanaeepour, A. Machanavajjhala, M.
Hay, and G. Miklau. (2019). “PrivateSQL: A Differentially Private
SQL Query Engine”. Proc. VLDB Endow. 12(11): 1371–1384. doi:
10.14778/3342263.3342274.

Lee, J. and C. Clifton. (2011). “How Much Is Enough? Choosing ϵ for
Differential Privacy”. In: Information Security, 14th International
Conference, ISC 2011, Xi’an, China, October 26-29, 2011. Proceed-
ings. Ed. by X. Lai, J. Zhou, and H. Li. Vol. 7001. Lecture Notes
in Computer Science. Springer. 325–340. doi: 10.1007/978-3-642-
24861-0_22.

Lee, J. and C. W. Clifton. (2014). “Top-k Frequent Itemsets via Differen-
tially Private FP-Trees”. In: Proceedings of the 20th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining.
KDD ’14. New York, New York, USA: Association for Computing
Machinery. 931–940. doi: 10.1145/2623330.2623723.

https://doi.org/10.1137/090756090
https://doi.org/10.1007/978-3-642-36594-2_26
https://doi.org/10.1145/2514689
https://doi.org/10.1145/1526709.1526733
https://doi.org/10.14778/3342263.3342274
https://doi.org/10.1007/978-3-642-24861-0_22
https://doi.org/10.1007/978-3-642-24861-0_22
https://doi.org/10.1145/2623330.2623723

References 221

Li, C., G. Miklau, M. Hay, A. McGregor, and V. Rastogi. (2015).
“The matrix mechanism: optimizing linear counting queries under
differential privacy”. VLDB J. 24(6): 757–781. doi: 10.1007/s00778-
015-0398-x.

Liu, C., S. Chakraborty, and P. Mittal. (2016). “Dependence Makes
You Vulnerable: Differential Privacy Under Dependent Tuples”. In:
23rd Annual Network and Distributed System Security Symposium,
NDSS 2016, San Diego, California, USA, February 21-24, 2016.
The Internet Society. url: http://wp.internetsociety.org/ndss/
wp-content/uploads/sites/25/2017/09/dependence-makes-you-
vulnerable-differential-privacy-under-dependent-tuples.pdf.

Lu, W., G. Miklau, and V. Gupta. (2014). “Generating Private Synthetic
Databases for Untrusted System Evaluation”. In: ICDE.

Lyu, M., D. Su, and N. Li. (2017). “Understanding the Sparse Vector
Technique for Differential Privacy”. Proc. VLDB Endow.

Machanavajjhala, A., D. Kifer, J. Gehrke, and M. Venkitasubramaniam.
(2007). “l-diversity: Privacy beyond k-anonymity”. ACM Transac-
tions on Knowledge Discovery from Data (TKDD). 1(1): 3–es.

McKenna, R., G. Miklau, M. Hay, and A. Machanavajjhala. (2018).
“Optimizing error of high-dimensional statistical queries under differ-
ential privacy”. PVLDB. 11(10): 1206–1219. doi: 10.14778/3231751.
3231769.

McGregor, A., I. Mironov, T. Pitassi, O. Reingold, K. Talwar, and S.
Vadhan. (2010). “The Limits of Two-Party Differential Privacy”. In:
Annual Symposium on Foundations of Computer Science. IEEE.

McKenna, R., R. K. Maity, A. Mazumdar, and G. Miklau. (2020).
“A workload-adaptive mechanism for linear queries under local
differential privacy”. Proc. VLDB Endow. 13(11): 1905–1918. url:
http://www.vldb.org/pvldb/vol13/p1905-mckenna.pdf.

McKenna, R., D. Sheldon, and G. Miklau. (2019). “Graphical-model
based estimation and inference for differential privacy”. In: Pro-
ceedings of the 36th International Conference on Machine Learning,
ICML 2019, 9-15 June 2019, Long Beach, California, USA. Ed. by
K. Chaudhuri and R. Salakhutdinov. Vol. 97. Proceedings of Machine
Learning Research. PMLR. 4435–4444. url: http://proceedings.mlr.
press/v97/mckenna19a.html.

https://doi.org/10.1007/s00778-015-0398-x
https://doi.org/10.1007/s00778-015-0398-x
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/dependence-makes-you-vulnerable-differential-privacy-under-dependent-tuples.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/dependence-makes-you-vulnerable-differential-privacy-under-dependent-tuples.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/dependence-makes-you-vulnerable-differential-privacy-under-dependent-tuples.pdf
https://doi.org/10.14778/3231751.3231769
https://doi.org/10.14778/3231751.3231769
http://www.vldb.org/pvldb/vol13/p1905-mckenna.pdf
http://proceedings.mlr.press/v97/mckenna19a.html
http://proceedings.mlr.press/v97/mckenna19a.html

222 References

McSherry, F. and K. Talwar. (2007). “Mechanism Design via Differential
Privacy”. In: Annual IEEE Symposium on Foundations of Computer
Science (FOCS). IEEE. url: https://www.microsoft.com/en-us/
research/publication/mechanism-design-via-differential-privacy/.

McSherry, F. D. (2009). “Privacy Integrated Queries: An Extensible
Platform for Privacy-Preserving Data Analysis”. In: Proceedings of
the 2009 ACM SIGMOD International Conference on Management
of Data. SIGMOD ’09. Providence, Rhode Island, USA. 19–30.

Mironov, I. (2012). “On significance of the least significant bits for
differential privacy”. In: Proceedings of the 2012 ACM conference
on Computer and communications security. 650–661.

Mironov, I. (2017). “Renyi differential privacy”. In: Computer Security
Foundations Symposium (CSF), 2017 IEEE 30th. IEEE. 263–275.

Mironov, I., O. Pandey, O. Reingold, and S. Vadhan. (2009). “Compu-
tational Differential Privacy”. In: Proceedings of the 29th Annual
International Cryptology Conference on Advances in Cryptology.
CRYPTO ’09. Santa Barbara, CA: Springer-Verlag. 126–142. doi:
10.1007/978-3-642-03356-8_8.

Mohan, P., A. Thakurta, E. Shi, D. Song, and D. E. Culler. (2012).
“GUPT: privacy preserving data analysis made easy”. In: Proceedings
of the ACM SIGMOD International Conference on Management
of Data, SIGMOD 2012, Scottsdale, AZ, USA, May 20-24, 2012.
349–360. doi: 10.1145/2213836.2213876.

Murtagh, J., K. Taylor, G. Kellaris, and S. Vadhan. (2018). “Usable
Differential Privacy: A Case Study with PSI”. arXiv: 1809.04103
[cs.HC].

Narayan, A. and A. Haeberlen. (2012). “DJoin: Differentially Private
Join Queries over Distributed Databases”. In: 10th USENIX Sym-
posium on Operating Systems Design and Implementation. 149–
162. url: https://www.usenix.org/conference/osdi12/technical-
sessions/presentation/narayan.

Nissim, K., S. Raskhodnikova, and A. D. Smith. (2007). “Smooth
sensitivity and sampling in private data analysis”. In: Proceedings
of the 39th Annual ACM Symposium on Theory of Computing, San
Diego, California, USA, June 11-13, 2007. Ed. by D. S. Johnson
and U. Feige. ACM. 75–84. doi: 10.1145/1250790.1250803.

https://www.microsoft.com/en-us/research/publication/mechanism-design-via-differential-privacy/
https://www.microsoft.com/en-us/research/publication/mechanism-design-via-differential-privacy/
https://doi.org/10.1007/978-3-642-03356-8_8
https://doi.org/10.1145/2213836.2213876
https://arxiv.org/abs/1809.04103
https://arxiv.org/abs/1809.04103
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/narayan
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/narayan
https://doi.org/10.1145/1250790.1250803

References 223

Ohm, P. (2009). “Broken promises of privacy: Responding to the sur-
prising failure of anonymization”. UCLA l. Rev. 57: 1701.

“OpenDP”. https://privacytools.seas.harvard.edu/opendp.
Raskhodnikova, S. and A. D. Smith. (2015). “Efficient Lipschitz Ex-

tensions for High-Dimensional Graph Statistics and Node Private
Degree Distributions”. CoRR. abs/1504.07912. arXiv: 1504.07912.
url: http://arxiv.org/abs/1504.07912.

Roth, E., D. Noble, B. H. Falk, and A. Haeberlen. (2019). “Honeycrisp:
large-scale differentially private aggregation without a trusted core”.
In: Proceedings of the 27th ACM Symposium on Operating Systems
Principles, SOSP 2019, Huntsville, ON, Canada, October 27-30,
2019. Ed. by T. Brecht and C. Williamson. ACM. 196–210. doi:
10.1145/3341301.3359660.

Roy, I., S. T. V. Setty, A. Kilzer, V. Shmatikov, and E. Witchel. (2010).
“Airavat: Security and Privacy for MapReduce”. In: Proceedings
of the 7th USENIX Symposium on Networked Systems Design and
Implementation, NSDI 2010, April 28-30, 2010, San Jose, CA, USA.
USENIX Association. 297–312. url: http://www.usenix.org/events/
nsdi10/tech/full%5C_papers/roy.pdf.

“Smart Noise”. https://github.com/opendp/smartnoise-samples.
Smith, A. D. (2011). “Privacy-preserving statistical estimation with

optimal convergence rates”. In: Proceedings of the 43rd ACM Sym-
posium on Theory of Computing, STOC 2011, San Jose, CA, USA,
6-8 June 2011. Ed. by L. Fortnow and S. P. Vadhan. ACM. 813–822.
doi: 10.1145/1993636.1993743.

Song, S., Y. Wang, and K. Chaudhuri. (2017). “Pufferfish Privacy
Mechanisms for Correlated Data”. In: Proceedings of the 2017 ACM
International Conference on Management of Data, SIGMOD Confer-
ence 2017, Chicago, IL, USA, May 14-19, 2017. Ed. by S. Salihoglu,
W. Zhou, R. Chirkova, J. Yang, and D. Suciu. ACM. 1291–1306.
doi: 10.1145/3035918.3064025.

Sweeney, L. (2000). “Simple demographics often identify people
uniquely”. Health (San Francisco). 671(2000): 1–34.

Sweeney, L. (2002). “k-anonymity: A model for protecting privacy”.
International Journal of Uncertainty, Fuzziness and Knowledge-
Based Systems. 10(05): 557–570.

https://privacytools.seas.harvard.edu/opendp
https://arxiv.org/abs/1504.07912
http://arxiv.org/abs/1504.07912
https://doi.org/10.1145/3341301.3359660
http://www.usenix.org/events/nsdi10/tech/full%5C_papers/roy.pdf
http://www.usenix.org/events/nsdi10/tech/full%5C_papers/roy.pdf
https://github.com/opendp/smartnoise-samples
https://doi.org/10.1145/1993636.1993743
https://doi.org/10.1145/3035918.3064025

224 References

Tang, J., A. Korolova, X. Bai, X. Wang, and X. Wang. (2017). “Privacy
Loss in Apple’s Implementation of Differential Privacy on MacOS
10.12”. CoRR. abs/1709.02753. arXiv: 1709.02753. url: http://
arxiv.org/abs/1709.02753.

Tao, Y., X. He, A. Machanavajjhala, and S. Roy. (2020). “Computing
Local Sensitivities of Counting Queries with Joins”. In: Proceed-
ings of the 2020 International Conference on Management of Data,
SIGMOD Conference 2020, online conference [Portland, OR, USA],
June 14-19, 2020. Ed. by D. Maier, R. Pottinger, A. Doan, W. Tan,
A. Alawini, and H. Q. Ngo. ACM. 479–494. doi: 10.1145/3318464.
3389762.

Vesga, E. L., A. Russo, and M. Gaboardi. (2020). “A Programming
Framework for Differential Privacy with Accuracy Concentration
Bounds”. In: 2020 IEEE Symposium on Security and Privacy, SP
2020, San Francisco, CA, USA, May 18-21, 2020. IEEE. 411–428.
doi: 10.1109/SP40000.2020.00086.

Wang, T., J. Blocki, N. Li, and S. Jha. (2017). “Locally Differentially
Private Protocols for Frequency Estimation”. In: 26th USENIX Se-
curity Symposium, USENIX Security 2017, Vancouver, BC, Canada,
August 16-18, 2017. Ed. by E. Kirda and T. Ristenpart. USENIX
Association. 729–745. url: https://www.usenix.org/conference/
usenixsecurity17/technical-sessions/presentation/wang-tianhao.

Wang, T., B. Ding, J. Zhou, C. Hong, Z. Huang, N. Li, and S. Jha.
(2019). “Answering Multi-Dimensional Analytical Queries under
Local Differential Privacy”. In: Proceedings of the 2019 International
Conference on Management of Data, SIGMOD Conference 2019,
Amsterdam, The Netherlands, June 30 - July 5, 2019. 159–176. doi:
10.1145/3299869.3319891.

Warner, S. L. (1965). “Randomized response: A survey technique for
eliminating evasive answer bias”. Journal of the American Statistical
Association. 60(309): 63–69.

Wilson, R. J., C. Y. Zhang, W. Lam, D. Desfontaines, D. Simmons-
Marengo, and B. Gipson. (2020). “Differentially Private SQL with
Bounded User Contribution”. Proceedings on Privacy Enhancing
Technologies. 2020(2): 230–250.

https://arxiv.org/abs/1709.02753
http://arxiv.org/abs/1709.02753
http://arxiv.org/abs/1709.02753
https://doi.org/10.1145/3318464.3389762
https://doi.org/10.1145/3318464.3389762
https://doi.org/10.1109/SP40000.2020.00086
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/wang-tianhao
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/wang-tianhao
https://doi.org/10.1145/3299869.3319891

References 225

Yang, J., T. Wang, N. Li, X. Cheng, and S. Su. (2020). “Answering
Multi-Dimensional Range Queries under Local Differential Privacy”.
CoRR. abs/2009.06538. arXiv: 2009.06538. url: https://arxiv.org/
abs/2009.06538.

Zhang, D., R. McKenna, I. Kotsogiannis, G. Bissias, M. Hay, A.
Machanavajjhala, and G. Miklau. (2020). “ϵKTELO: A Frame-
work for Defining Differentially Private Computations”. ACM Trans.
Database Syst.

Zhang, D. and D. Kifer. (2017). “LightDP: towards automating differen-
tial privacy proofs”. In: Proceedings of the 44th ACM SIGPLAN Sym-
posium on Principles of Programming Languages, POPL 2017, Paris,
France, January 18-20, 2017. Ed. by G. Castagna and A. D. Gordon.
ACM. 888–901. url: http://dl.acm.org/citation.cfm?id=3009884.

Zhang, J., G. Cormode, C. M. Procopiuc, D. Srivastava, and X. Xiao.
(2014). “PrivBayes: private data release via bayesian networks”. In:
International Conference on Management of Data, SIGMOD 2014,
Snowbird, UT, USA, June 22-27, 2014. 1423–1434. doi: 10.1145/
2588555.2588573.

Zhang, Z., T. Wang, N. Li, S. He, and J. Chen. (2018). “CALM: Con-
sistent Adaptive Local Marginal for Marginal Release under Local
Differential Privacy”. In: Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2018,
Toronto, ON, Canada, October 15-19, 2018. Ed. by D. Lie, M. Man-
nan, M. Backes, and X. Wang. ACM. 212–229. doi: 10.1145/3243734.
3243742.

https://arxiv.org/abs/2009.06538
https://arxiv.org/abs/2009.06538
https://arxiv.org/abs/2009.06538
http://dl.acm.org/citation.cfm?id=3009884
https://doi.org/10.1145/2588555.2588573
https://doi.org/10.1145/2588555.2588573
https://doi.org/10.1145/3243734.3243742
https://doi.org/10.1145/3243734.3243742

	Introduction
	Basics of Differential Privacy
	Definition & Properties
	Databases & Distance Metrics
	Basic Mechanisms
	Composition
	Advanced Mechanisms

	Problem Definition
	Queries & Query Workloads
	Measuring Utility
	Threat Model
	What can be Learned Accurately
	Additional Challenges of the Database Setting
	Summary of Approaches

	Mechanisms for Linear Queries
	MWEM
	Matrix Mechanism
	Data-Aware/Workload-Aware (DAWA) Mechanism
	Others

	Mechanisms for High-Dimensional Data
	DualQuery
	PrivBayes
	HDMM
	PGM

	Mechanisms for Highly Sensitive Queries
	Local Sensitivity
	Propose-Test-Release
	Smooth Sensitivity
	Sample & Aggregate
	Lipschitz Extensions

	Mechanisms for Multi-Relational Databases
	Defining Privacy for Multi-Relational Databases
	DP Systems for Multi-relational Databases
	PINQ
	Flex
	PrivateSQL
	GoogleDP

	Frameworks for Differentially Private Analysis
	ktelo
	APEx

	Eliminating the Trusted Data Curator
	The Local Model
	The Shuffle Model
	Leveraging Secure Computation

	Implementation Issues & Open Challenges
	Privacy Definitions & Algorithm Design
	System Implementation & Integration
	Social Considerations

	References

